当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2013年广西钦州市中考数学试卷

更新时间:2017-05-19 浏览次数:540 类型:中考真卷
一、选择题
二、填空题.
三、解答题
  • 19. (2013·钦州) 计算:|﹣5|+(﹣1)2013+2sin30°﹣
  • 20. (2013·钦州) 如图,梯形ABCD中,AD∥BC,AB∥DE,∠DEC=∠C,求证:梯形ABCD是等腰梯形.

  • 21. (2023九上·哈尔滨期中)

    如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:

    1. (1) 画出△ABC关于x轴对称的△A1B1C1 , 并写出点A1的坐标.

    2. (2) 画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2 , 并写出点A2的坐标.

    1. (1) 我市开展了“寻找雷锋足迹”的活动,某中学为了了解七年级800名学生在“学雷锋活动月”中做好事的情况,随机调查了七年级50名学生在一个月内做好事的次数,并将所得数据绘制成统计图,请根据图中提供的信息解答下列问题:

      ①所调查的七年级50名学生在这个月内做好事次数的平均数是      , 众数是      , 极差是     

      ②根据样本数据,估计该校七年级800名学生在“学雷锋活动月”中做好事不少于4次的人数.

    2. (2) 甲口袋有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5,从这两个口袋中各随机地取出1个小球.

      ①用“树状图法”或“列表法”表示所有可能出现的结果;

      ②取出的两个小球上所写数字之和是偶数的概率是多少?

  • 23. (2020九上·岱岳期末) 如图,一次函数y=ax+b的图象与反比例函数y= 的图象交于A(﹣2,m),B(4,﹣2)两点,与x轴交于C点,过A作AD⊥x轴于D.

    1. (1) 求这两个函数的解析式:
    2. (2) 求△ADC的面积.
  • 24. (2013·钦州)

    如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1: ,AB=10米,AE=15米.(i=1: 是指坡面的铅直高度BH与水平宽度AH的比)

    (测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414, 1.732)

    1. (1) 求点B

      距水平面AE的高度BH;

    2. (2) 求广告牌CD的高度.

  • 25. (2013·钦州) 如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=

    1. (1) 求⊙O的半径OD;
    2. (2) 求证:AE是⊙O的切线;
    3. (3) 求图中两部分阴影面积的和.
  • 26. (2013·钦州)

    如图,在平面直角坐标系中,O为坐标原点,抛物线y= x2+2x与x轴相交于O、B,顶点为A,连接OA.

    1. (1) 求点A的坐标和∠AOB的度数;

    2. (2) 若将抛物线y= x2+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C.连接OC和AC,把△AOC沿OA翻折得到四边形ACOC′.试判断其形状,并说明理由;

    3. (3) 在(2)的情况下,判断点C′是否在抛物线y= x2+2x上,请说明理由.

    4. (4) 若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由. (参考公式:二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为( ),对称轴是直线x= .)

微信扫码预览、分享更方便

试卷信息