当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市朝阳区2018-2019学年九年级上学期数学期中考试试...

更新时间:2024-07-13 浏览次数:318 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 17. (2018九上·朝阳期中) 如图,在Rt△OAB中,∠OAB=90,且点B的坐标为(4,2)

    1. (1) 画出△OAB绕点O逆时针旋转90°后的△OA1B1
    2. (2) 求点B旋转到点B1所经过的路线长(结果保留π)
  • 18. (2018九上·朝阳期中) 二次函数yax2+bx+ca≠0)的部分图象如图所示.

    1. (1) 确定二次函数的解析式;
    2. (2) 若方程ax2+bx+ck有两个不相等的实数根,求k的取值范围.
  • 19. (2018九上·朝阳期中) 如图,四边形ABCD内接于⊙O , ∠ABC=135°,AC=4,求⊙O的半径长.

  • 20. (2018九上·朝阳期中) 关于x一元二次方程x2+mx+n=0.
    1. (1) 当mn+2时,利用根的判别式判断方程根的情况.
    2. (2) 若方程有实数根,写出一组满足条件的mn的值,并求此时方程的根.
  • 21. (2019九上·赵县期中) 如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°,求∠APB的度数.


  • 22. (2021九上·大兴期末) 某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w(双)与销售单价x(元)满足w=﹣2x+80(20≤x≤40),设销售这种手套每天的利润为y(元).
    1. (1) 求yx之间的函数关系式;
    2. (2) 当销售单价定为多少元时,每天的利润最大?最大利润是多少?
  • 23. (2018九上·朝阳期中) 如图,已知直角坐标系中一条圆弧经过正方形网格的格点A(0,4)、B(4,4)、C(6,2)

    1. (1) 用直尺画出该圆弧所在圆的圆心M的位置,并标出M点的坐标;
    2. (2) 若D点的坐标为(7,0),想一想直线CD与⊙M有怎样的位置关系,并证明你的猜想.
  • 24. (2018九上·朝阳期中) 已知:如图,在△ABC中,ABAC , 以AC为直径的⊙OBC交于点DDEAB , 垂足为EED的延长线与AC的延长线交于点F

    1. (1) 求证:DE是⊙O的切线;
    2. (2) 若⊙O的半径为4,∠F=30°,求DE的长.
  • 25. (2018九上·朝阳期中) 如图,Q是弧AB与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交弧AB于点C , 连接BC . 已知AB=6cm , 设AP两点间的距离为xcmPC两点间的距离为y1cmAC两点间的距离为y2cm

    小明根据学习函数的经验,分别对函数y1y2 , 随自变量x的变化而变化的规律进行了探究.

    下面是小明的探究过程,请补充完整:

    1. (1) 确定自变量x的取值范围是
    2. (2) 按下表中自变量x的值进行取点、画图、测量,分别得到了y1y2x的几组对应值.

      x/cm

      0

      1

      2

      3

      4

      5

      6

      y1/cm

      5.62

      4.67

      3.76

      2.65

      3.18

      4.37

      y2/cm

      5.62

      5.59

      5.53

      5.42

      5.19

      4.73

      4.11

    3. (3) 在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(xy1),(xy2),并面出函数y1y2的图象.
    4. (4) 结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm

  • 26. (2018九上·朝阳期中) 在平面直角坐标系中xOy中,抛物线yx2﹣4x+m+2的顶点在x轴上.

    1. (1) 求抛物线的表达式;
    2. (2) 点Qx轴上一点,

      ①若在抛物线上存在点P , 使得∠POQ=45°,求点P的坐标.

      ②抛物线与直线y=1交于点EF(点E在点F的左侧),将此抛物线在点EF(包含点E和点F)之间的部分沿x轴向左平移n个单位后得到的图象记为G , 若在图象G上存在点P , 使得∠POQ=45°,求n的取值范围.

  • 27. (2018九上·朝阳期中) 已知:在四边形ABCD中,ABAD , ∠ABC+∠ADC=180°

    1. (1) 如图①,若∠ACD=60°,BC=1,CD=3,则AC的长为
    2. (2) 如图②,若∠ACD=45°,BC=1,CD=3,求出AC的长;
    3. (3) 如图③,若∠ACD=30°,BCaCDb , 直接写出AC的长.
  • 28. (2018九上·朝阳期中) 在平面直角坐标系xOy中,点A的坐标为(0,m),且m≠0,点B的坐标为(n , 0),将线段AB绕点B顺时针旋转90°.得到线段BA1 , 称点A1为点A关于点B的“伴随点”,图1为点A关于点B的“伴随点”的示意图

    1. (1) 已知点A(0,4),

      ①当点B的坐标分别为(1,0),(﹣2,0)时,点A关于点B的“伴随点”的坐标分别为

    2. (2) ②点(xy)是点A关于点B的“伴随点”,直接写出yx之间的关系式;
    3. (3) 如图2,点C的坐标为(﹣3,0),以C为圆心, 为半径作圆,若在⊙C上存在点A关于点B的“伴随点”,直接写出点A的纵坐标m的取值范围.

微信扫码预览、分享更方便

试卷信息