当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省天台县赤城中学2020届九年级上学期数学第一次月考试卷

更新时间:2019-10-30 浏览次数:236 类型:月考试卷
一、选择题(每题4分,共40分)
二、填空题(每题5分,共30分)
三、解答题(共80分)
  • 17. (2019九上·天台月考) 用适当的方法解方程
    1. (1) 2x2-8=0
    2. (2) 2x(x-3)=5(x-3)
  • 18. (2019九上·天台月考) 已知抛物线
    1. (1) 用配方法求出它的顶点坐标、对称轴方程.
    2. (2) 画草图,结合图像回答 x取何值时,y<0?
  • 19. (2023九下·仙桃会考) 已知关于x的一元二次方程 有两个实数根
    1. (1) 求实数m的取值范围;
    2. (2) 若 ,求m的值.
  • 20. 如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1 , 点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2 , 且S1=S2

    1. (1) 求线段CE的长;
    2. (2) 若点H为BC边的中点,连接HD,求证:HD=HG.
  • 21. (2019九上·天台月考) 有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°。要在这块余料中截取一块矩形材料,其中一边在AE上,并使所截矩形的面积尽可能大.

    1. (1) 若所截矩形材料的一条边是BC或AE,求矩形材料的面积;
    2. (2) 能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由.
  • 22. (2019九上·天台月考) 如图,二次函数y=-x2+bx+c与x轴交于点B和点A(−1,0),与y轴交于点C(0,4),与一次函数y=x+a交于点A和点D.

    1. (1) 求出a、b、c的值;
    2. (2) 若直线AD上方的抛物线存在点E,可使得△EAD面积最大,求点E的坐标;
    3. (3) 点F为线段AD上的一个动点,点F到(2)中的点E的距离与到y轴的距离之和记为d,求d的最小值及此时点F的坐标。
  • 23. (2022九上·顺庆期末) 某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.

    1. (1) 求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;
    2. (2) 若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?
    3. (3) 若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?
  • 24. (2019九上·天台月考) 已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”。

    1. (1) ①如图2,求出抛物线y=x2的“完美三角形”斜边AB的长;

      ②请写出一个抛物线的解析式,使它的完美三角形与y=x2+1的“完美三角形”全等

    2. (2) 若抛物线y=ax2+4的“完美三角形”的斜边长为4,求a的值;
    3. (3) 若抛物线y=mx2+2x+n−5的“完美三角形”斜边长为n,且y=mx2+2x+n−5的最大值为−1,求m,n的值。

微信扫码预览、分享更方便

试卷信息