当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京四中2020年中考数学4月模拟试卷

更新时间:2020-05-15 浏览次数:313 类型:中考模拟
一、选择题(本题共16分·每小题2分)
二、填空题(本题共16分,每小题2分)
三、解答题
  • 19. (2020·北京模拟) 关于x的一元二次方程x2+2x-(n-1)=0有两个不相等的实数根。
    1. (1) 求n的取值范围;
    2. (2) 若n为取值范围内的最小整数,求此方程的根。
  • 20. (2020·北京模拟) 如图,在△ABC中,∠ACB=90°,D是BC边上的一点,分别过点A、B作BD、AD的平行线交于点E,且AB平分∠EAD。

    1. (1) 求证:四边形EADB是菱形;
    2. (2) 连接EC,当∠BAC=60°,BC=2 时,求△ECB的面积。
  • 21. (2020·北京模拟) 直线l1:y=k1x+b过A(0,-3),B(5,2),直线l2:y=k2x+2。

    1. (1) 求直线l1的表达式;
    2. (2) 当x≥4时,不等式k1x+b>k2x+2恒成立,请写出一个满足题意的k2的值。
  • 22. (2020·北京模拟) 如图,直线y=2x与函数y=  (x>0)的图象交于点A(1,2)。

    1. (1) 求m的值;
    2. (2) 过点A作x轴的平行线l,直线y=2x+b与直线l交于点B,与函数y= (x>0)的图象交于点C,与x轴交于点D。

      ①若点C是线段BD的中点时,则点C的坐标是,b的值是

      ②当BC>BD时,直接写出b的取值范围

  • 23. (2020·北京模拟) 如图,四边形ABCD内接于⊙O,点O在AB上,BC=CD,过点C作⊙O的切线,分别交AB,AD的延长线于点E,F。

    1. (1) 求证:AF⊥EF;
    2. (2) 若cosA= ,BE=1,求AD的长。
  • 24. (2020·北京模拟) 在等腰直角三角形ABC中,AB=AC,∠BAC=90°,点P为射线BA上一个动点,连接PC,点D在直线BC上,且PD=PC。过点P作EP⊥PC于点P,点D,E在直线AC的同侧,且PE=PC,连接BE。请用等式表示线段BE,BP,BC之间的数量关系。

    小明根据学习函数的经验,对线段BE,BP,BC的长度之间的关系进行了探究。下面是小明的探究过程。请补充完整:

    1. (1) 对于点PC在射线BA上的不同位置,画图、测量,得到了线段BE,BP,BC的长度的几组值,如下表:

      位置1

      位置2

      位置3

      位置4

      位置5

      位置6

      位置7

      位置8

      BC/cm

      2.83

      2.83

      2.83

      2.83

      2.83

      2.83

      2.83

      2.83

      BE/cm

      2.10

      1.32

      0.53

      0.00

      1.32

      2.10

      4.37

      5.6

      BP/cm

      0.52

      1.07

      1.63

      2.00

      2.92

      3.48

      5.09

      5.97

      在BE,BP,BC的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数,的长度是常量。

    2. (2) 在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;
    3. (3) 结合函数图象,解决问题:请用等式表示线段BE,BP,BC之间的数量关系。
  • 25. (2020·北京模拟) 为了推动全社会自觉尊法学法守法用法,促进全面依法治国,某区每年都举办普法知识竞赛.该区某单位甲、乙两个部门各有员工200人,要在这两个部门中挑选一个部门代表单位参加今年的竞赛,为了解这两个部门员工对法律知识的掌握情况,进行了抽样调查,从甲、乙两个部门各随机抽取20名员工,进行了法律知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析。下面给出了部分信息。

    a.甲部门成绩的频数分布直方图如下

    (数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):

    b.乙部门成绩如下:

    乙 40 52 70 70 71 73 77 78 80 81

    82 82 82 82 83 83 83 86 91 94

    c.甲、乙两部门成绩的平均数、方差、中位数如下:

    平均数

    方差

    中位数

    79.6

    36.84

    78.5

    77

    147.2

    m

    d.近五年该单位参赛员工进入复赛的出线成绩如下

    2014年

    2015年

    2016年

    2017年

    2018年

    出线成绩(百分制)

    79

    81

    80

    81

    82

    根据以上信息,回答下列问题

    1. (1) 写出表中m的值;
    2. (2) 可以推断出选择部门参赛更好,理由为
    3. (3) 预估(2)中部门今年参赛进入复赛的人数为
  • 26. (2020·北京模拟) 在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α(0°<α≤90°),点F,G,P分别是DE,BC,CD的中点,连接PF,PG。

    1. (1) 如图①,α=90°,点D在AB上,则∠FPG=°
    2. (2) 如图②,α=60°,点D不在AB上,判断∠FPG的度数,并证明你的结论;
    3. (3) 连接FG,若AB=5,AD=2,固定△ABC,将△ADE绕点A旋转,当PF的长最大时,FG的长为(用含α的式子表示)。
  • 27. (2020·北京模拟) 抛物线y=-2x²+mx+n经过点A(0,2),B(3,-4)。

    1. (1) 求该抛物线的函数表达式及对称轴;
    2. (2) 设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点),如果直线CD与图象G有两个公共点,结合函数的图象,求点D纵坐标t的取值范围。
  • 28. (2020·北京模拟) 对于平面直角坐标系xOy中的点P和⊙M(半径为r),给出如下定义:若点P关于点M的对称点为Q,且r≤PQ≤3r,则称点P为⊙M的称心点。

    1. (1) 当⊙O的半径为2时,

      ①如图1,在点A(0,1),B(2,0),C(3,4)中,⊙O的称心点是

    2. (2) ⊙T的圆心为T(0,r),半径为2,直线y= x+1与x轴,y轴分别交于点E,F。若线段EF上的所有点都是⊙T的称心点,直接写出t的取值范围。

微信扫码预览、分享更方便

试卷信息