当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山东省青岛市平度市2020年中考数学一模(期中)试卷

更新时间:2024-11-06 浏览次数:527 类型:中考模拟
一、选择题
二、填空题
三、作图题(本题满分4分)
四、解答题
  • 16. (2020·平度模拟) (本题满分8分,每小题4分)
    1. (1) 解不等式组 ,并写出它的正整数解;
    2. (2) 化简:
  • 17. (2021九上·天门月考) 小明和小亮进行“转盘”游戏:下面是两个可以自由转动的转盘,游戏者同时转动两个转盘,如果两个转盘转出的颜色相同,则小明胜;如果转出的颜色可以配成紫色(一个转盘转出红色,另一个转盘转出蓝色),则小亮胜,这个游戏对两人公平吗?请说明理由。

     

  • 18. (2020·平度模拟) 2020年1月6日,《青岛市生活垃圾分类管理办法》正式施行,这标志着继上海强制实施垃圾分类后,青岛成为山东省首座进入生活垃圾分类法治化城市.某学校团委为了解本校学生对垃圾分类知识的掌握情况,对全校3500名学生进行了一次垃圾分类知识竞赛,并随机抽取了部分试卷进行分析,然后制成了如下不完整的统计图表,请根据图表中信息解答下列问题:

    组 别

    分数分组

    人数(频数)

    频率

    A

    50≤x<60

    a

    0.04

    B

    60≤x<70

    9

    0.09

    C

    70≤x<80

    22

    0.22

    D

    80<x<90

    b

    n

    E

    90≤x<100

    28

    0.28

    合计

    c

    1

    (注:本次竞赛满分100分,学生得分最低分50分,并且没有满分)

    1. (1) c=,n=
    2. (2) 补全频数分布直方图;
    3. (3) 该校计划对考试成绩为90<x<100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数。
  • 19. (2021·青岛模拟) 如图,EF表示一座风景秀美的观景山,AC,CE是已经修好的登山步行道。该景区为方便老年游客登顶观景,欲在山脚A与山顶E之间架设一条登山索道AE。在山脚A处测得点C的仰角为24°,在C处测得山顶E的仰角为45°,在山脚A处测得山顶E的仰角为37°.已知步行道AC长640米,则新架设的索道AE长多少米?

    (参考数据:sin24°≈ ,cos 24°≈ ,tan24°≈ ,sin37°≈ ,cos37°≈ ,tan 37°≈ )

  • 20. (2020·平度模拟) 新冠肺炎疫情发生后,社会各界积极行动,以各种方式倾情支援湖北疫区。某车队需要将一批生活物资运送至湖北疫区。已知该车队计划每天运送的货物吨数y(吨)与运输时间x(天)之间满足如图所示的反比例函数关系。

    1. (1) 求该车队计划每天运送的货物吨数y(吨)与运输时间x(天)之间的函数关系式(不需要写出自变量x的取值范围);
    2. (2) 根据计划,要想在5天之内完成该运送任务,则该车队每天至少要运送多少吨物资?
    3. (3) 为保证该批生活物资的尽快到位,该车队实际每天运送的货物吨数比原计划多了25%,最终提前了1天完成任务,求实际完成运送任务的天数。
  • 21. (2020·平度模拟) 如图,矩形EFGH的顶点E,G分别在平行四边形ABCD的边AD,BC上,顶点F,H在平行四边形ABCD的对角线BD上。

    1. (1) 求证:BG=DE;
    2. (2) 若E为AD中点,AD=FH,试判断平行四边形ABCD是什么特殊的平行四边形?请说明理由。
  • 22. (2020·平度模拟) 某商店销售一种商品,经市场调查发现:该商品的日销售量y(件)是售价x(元/件)的一次函数,其售价、日销售量、日销售利润w(元)的三组对应值如下表:

    售价x(元/件)

    50

    60

    80

    日销售量y(件)

    100

    80

    40

    日销售利润w(元)

    1000

    1600

    1600

    注:日销售利润=日销售量×(售价一进价)

    1. (1) 求日销售量y关于售价x的函数关系式(不要求写出自变量的取值范围);
    2. (2) 由于某种原因,该商品进价提高了5元/件,物价部门规定该商品售价不得超过65元/件,若在今后的销售中,日销售量与售价仍然满足(1)中的函数关系,要使该商店日销售利润最大,则售价应定为多少元?最大利润是多少?
  • 23. (2020·平度模拟) 【问题提出】

    如图,有三根针和套在一根针上的n个金属片,按下列规则移动金属片,

    规则1:每次只能移动一个金属片;

    规则2:较大的金属片不能放在较小的金属片上面.

    则把这n个金属片从1号针移到3号针,最少需要移动多少次

    我们从移动1,2,3,4个金属片入手,探究其中的规律性,进而归纳出移动n个金属片所需的次数。

    探究一:

    当n=1时,只需要把金属片从1号针移到3号针,用符号(13)表示,共移动了1次。(说明:(13)表示把金属片从1号针移到3号针,以此类推)

    探究二:

    当n=2时,为了避免将较大的金属片放在较小的金属片上面,移动顺序是(本次移动我们借助2号针作为“中间针”):

    (Ⅰ)把第1个金属片从1号针移到2号针;

    (Ⅱ)把第2个金属片从1号针移到3号针;

    (Ⅲ)把第1个金属片从2号针移到3号针。

    用符号表示为:(Ⅰ)(12);(Ⅱ)(13);(Ⅲ)(23),共移动了3次。

    探究三:

    当n=3时,移动顺序是:

    (Ⅰ)把上面两个金属片从1号针移到2号针;

    (Ⅱ)把第3个金属片从1号针移到3号针;

    (Ⅲ)把上面两个金属片从2号针移到3号针。

    1. (1) 其中(Ⅰ)和(II)都需要借助合适的“中间针”,用符号表示为:(Ⅰ):(13)(12)(32);(Ⅱ) (13);(Ⅲ);共移动了次。
    2. (2) 探究四:

      当n=4时,移动顺序是:

      (Ⅰ)把上面个金属片从1号针移到2号针;

       (Ⅱ)把第个金属片从1号针移到3号针;

       (Ⅲ)把上面个金属片从2号针移到3号针。

    3. (3) 完成(Ⅰ)需移动次,完成(Ⅲ)需移动次,共移动了次。

      ……

    4. (4) 【问题解决】

      根据探究一~四,以此类推,你能发现移动规律并对得出的结论进行归纳猜想吗?请你直接写出猜想结果:若把这n个金属片从1号针移到3号针,最少需要移动次。

  • 24. (2020·平度模拟) 如图,已知矩形ABCD,AB=6cm,BC=8cm,点P从点D出发,沿DA方向匀速向点A运动,同时,点E从点C出发,沿CA方向匀速向点A运动,速度均为1cm/s;当点P、E中有一点停止运动时,另一点也停止运动,点F为CD中点,连

    接PE、PF。设运动时间为t(s)(0<t<8),解答下列问题:

    1. (1) 求当t为何值时,点P运动到∠ABD的平分线上;

    2. (2) 设△PEF的面积为y(cm²) ,求y与t之间的函数关系式;
    3. (3) 在运动过程中,是否存在某一时刻t,使得S△PEF:S矩形ABCD=1:8?若存在,求出t的值;若不存在,请说明理由;
    4. (4) 连接DE,在运动过程中,是否存在某一时刻t,使得△CDE是等腰三角形。若存在,求出t的值;若不存在,请说明理由。

微信扫码预览、分享更方便

试卷信息