当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湖南省株洲市2020年中考数学试卷

更新时间:2020-08-10 浏览次数:531 类型:中考真卷
一、单选题
二、填空题
三、解答题
  • 20. (2020·株洲) 先化简,再求值: ,其中
  • 21. (2021·滕州模拟) 某高速公路管理部门工作人员在对某段高速公路进行安全巡检过程中,发现该高速公路旁的一斜坡存在落石隐患.该斜坡横断面示意图如图所示,水平线 ,点A、B分别在 上,斜坡AB的长为18米,过点B作 于点C,且线段AC的长为 米.

       

    1. (1) 求该斜坡的坡高BC;(结果用最简根式表示)
    2. (2) 为降低落石风险,该管理部门计划对该斜坡进行改造,改造后的斜坡坡脚 为60°,过点M作 于点N,求改造后的斜坡长度比改造前的斜坡长度增加了多少米?
  • 22. (2020·株洲) 近几年,国内快递业务快速发展,由于其便捷、高效,人们越来越多地通过快递公司代办点来代寄包裹.某快递公司某地区一代办点对60天中每天代寄的包裹数与天数的数据(每天代寄包裹数、天数均为整数)统计如下:

    1. (1) 求该数据中每天代寄包裹数在 范围内的天数;
    2. (2) 若该代办点对顾客代寄包裹的收费标准为:重量小于或等于1千克的包裹收费8元;重量超1千克的包裹,在收费8元的基础上,每超过1千克(不足1千克的按1千克计算)需再收取2元.

      ①某顾客到该代办点寄重量为1.6千克的包裹,求该顾客应付多少元费用?

      ②这60天中,该代办点为顾客代寄的包表中有一部分重量超过2千克,且不超过5千克.现从中随机抽取40件包裹的重量数据作为样本,统计如下:

      重量G(单位:千克)

      件数(单位:件)

      15

      10

      15

      求这40件包裹收取费用的平均数.

  • 23. (2020八上·景德镇期中) 如图所示, 的顶点E在正方形ABCD对角线AC的延长线上,AE与BF交于点G,连接AF、CF,满足

    1. (1) 求证:
    2. (2) 若正方形ABCD的边长为1, ,求 的值.
  • 24. (2020·株洲) AB是 的直径,点C是 上一点,连接AC、BC,直线MN过点C,满足

    1. (1) 如图①,求证:直线MN是 的切线;
    2. (2) 如图②,点D在线段BC上,过点D作 于点H,直线DH交 于点E、F,连接AF并延长交直线MN于点G,连接CE,且 ,若 的半径为1, ,求 的值.
  • 25. (2023·永善模拟) 如图所示, 的顶点A在反比例函数 的图像上,直线AB交y轴于点C,且点C的纵坐标为5,过点A、B分别作y轴的垂线AE、BF,垂足分别为点E、F,且

    1. (1) 若点E为线段OC的中点,求k的值;
    2. (2) 若 为等腰直角三角形, ,其面积小于3.

      ①求证:

      ②把 称为 两点间的“ZJ距离”,记为 ,求 的值.

  • 26. (2020·株洲) 如图所示,二次函数 的图像(记为抛物线 )与y轴交于点C,与x轴分别交于点A、B,点A、B的横坐标分别记为 ,且

    1. (1) 若 ,且过点 ,求该二次函数的表达式;
    2. (2) 若关于x的一元二次方程 的判别式 .求证:当 时,二次函数 的图像与x轴没有交点.
    3. (3) 若 ,点P的坐标为 ,过点P作直线l垂直于y轴,且抛物线的 顶点在直线l上,连接OP、AP、BP,PA的延长线与抛物线 交于点D,若 ,求 的最小值.

微信扫码预览、分享更方便

试卷信息