当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

安徽省芜湖市无为县2019-2020学年八年级上学期数学期末...

更新时间:2024-07-13 浏览次数:303 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 15. (2021八上·巢湖期末) 计算:(﹣2x2﹣(2x+1)(2x﹣1)+(x﹣2)2
  • 17. (2020八上·无为期末) 先化简,再求值: ÷(a ),其中a=3,b=1.
  • 18. (2020八上·无为期末) 阅读材料:人教版八年级上册数学教材第121页的“阅读与思考”内容介绍,在因式分解中有一类形如x2+(p+qx+pq的多项式,其常数项是两个因数的积,而一次项系数恰好是这两个因数的和,则我们可以把它分解成x2+(p+qx+pq=(x+p)(x+q).

    例如,x2+3x+2=x2+(1+2)x+1×2=(x+1)(x+2),具体做法是先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角:然后交叉相乘,求代数和,使其等于一次项系数(如图),这种方法称为“十字相乘法”.

    解决问题:

    1. (1) 请模仿上例,运用十字相乘法将多项式x2x﹣6因式分解(画出十字相乘图)
    2. (2) 若多项式x2+kx﹣12可以分解成(x+m)(x+n)(mn为整数)的形式,则m+n的最大值为
  • 19. (2020八上·无为期末) 如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).

    1. (1) 画出△ABC关于y轴的对称轴图形△A1B1C1(不写画法);

      点A1的坐标为;点B1的坐标为;点C1的坐标为

    2. (2) 若网格上的每个小正方形的边长为1,则△ABC的面积是
  • 20. (2020八上·无为期末) 如图,已知∠AOB , 以O为圆心,以任意长为半径作弧,分别交OAOBFE两点,再分别以EF为圆心,大于 EF长为半径作圆弧,两条圆弧交于点P , 作射线OP , 过点FFDOBOP于点D.

    1. (1) 若∠OFD=116°,求∠DOB的度数;
    2. (2) 若FMOD , 垂足为M , 求证:△FMO≌△FMD.
  • 21. (2020八上·无为期末) 为了响应习近平总书记“绿水青山就是金山银山”的号召,芜湖市对境内24km长江干流岸线环境进行集中专项整治,全部工程由甲乙两家施工队共同分别从上、下游同时进行,已知乙施工队的平均整治速度是甲施工队的1.5倍,原计划用若干天完成,后来为了提前完工,两家施工队都将施工速度提高20%,结果比原计划提前两天完成全部整治任务,求甲施工队原计划平均每天整治多少m
  • 22. (2020八上·无为期末) 已知ab是实数,定义关于“△”的一种运算如下:ab=(ab2﹣(a+b2
    1. (1) 小明通过计算发现ab=﹣4ab , 请说明它成立的理由.
    2. (2) 利用以上信息得x ,若x =3,求(x 4的值.
    3. (3) 请判断等式(ab)△ca△(bc)是否成立?并说明理由.
  • 23. (2020八上·无为期末) 学习与探究:

    在等边△ABC中,P是射线AB上的一点.

    1. (1) 探索实践:

      如图1,P是边AB的中点,D是线段CP上的一个动点,以CD为边向右侧作等边△CDEDEBC交于点M , 连结BE

      ①求证:ADBE

      ②连结BD , 当DB+DM最小时,试在图2中确定D的位置,并说明理由;(要求用尺规作图,保留作图痕迹)

      ③在②的条件下,求△CME与△ACM的面积之比.

    2. (2) 思维拓展:

      如图3,点P在边AB的延长线上,连接CP , 点B关于直线CP的对称点为B',连结AB',CB',AB'交BC于点N , 交直线CP于点G , 连结BG . 请判断∠AGC与∠AGB的大小关系,并证明你的结论.

微信扫码预览、分享更方便

试卷信息