当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市西城区2019-2020学年九年级上学期数学期末试卷

更新时间:2024-07-13 浏览次数:72 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 18. (2020九上·西城期末) 已知二次函数
    1. (1) 写出该二次函数图象的对称轴及顶点坐标,再描点画图;
    2. (2) 利用图象回答:当x取什么值时,
  • 19. (2021九下·福州开学考) 如图,在 中, 平分 ,E是 上一点,且

    1. (1) 求证:
    2. (2) 若 ,求 的值.
  • 20. (2020九上·西城期末) 如图,在正方形 中,点E在边 上,将点E绕点D逆时针旋转得到点F,若点F恰好落在边 的延长线上,连接

    1. (1) 判断 的形状,并说明理由;
    2. (2) 若 ,则 的面积为
  • 21. (2020九上·西城期末) 某校要组织“风华杯”篮球赛,赛制为单循环形式(每两队之间都赛一场).
    1. (1) 如果有4支球队参加比赛,那么共进行场比赛;
    2. (2) 如果全校一共进行36场比赛,那么有多少支球队参加比赛?
  • 22. (2020九上·西城期末) 如图, 的直径, 的两条切线,切点分别为B,C.连接 于点D,交 于点E,连接AC.

    1. (1) 求证:
    2. (2) 若 的半径为5, ,求 的长.
  • 23. (2020九上·西城期末) 图1是一个倾斜角为 的斜坡的横截面, .斜坡顶端B与地面的距离 为3米.为了对这个斜坡上的绿地进行喷灌,在斜坡底端安装了一个喷头A,喷头A喷出的水珠在空中走过的曲线可以看作抛物线的一部分.设喷出水珠的竖直高度为y(单位:米)(水珠的竖直高度是指水珠与地面的距离),水珠与喷头A的水平距离为x(单位:米),y与x之间近似满足函数关系 (a,b是常数, ),图2记录了x与y的相关数据.

    1. (1) 求y关于x的函数关系式;
    2. (2) 斜坡上有一棵高1.8米的树,它与喷头A的水平距离为2米,通过计算判断从A喷出的水珠能否越过这棵树.
  • 24. (2020九上·西城期末) 如图,四边形 内接于 是对角线。点E在 的延长线上,且

    1. (1) 判断 的位置关系,并说明理由;
    2. (2) 的延长线交于点F,若 ,求 的长.
  • 25. (2020九上·西城期末) 下面给出六个函数解析式:

    小明根据学习二次函数的经验,分析了上面这些函数解析式的特点,研究了它们的图象和性质。下面是小明的分析和研究过程,请补充完整:

    1. (1) 观察上面这些函数解析式,它们都具有共同的特点,可以表示为形如 ,其中x为自变量;
    2. (2) 如图,在平面直角坐标系 中,画出了函数 的部分图象,用描点法将这个函数的图象补充完整;

    3. (3) 对于上面这些函数,下列四个结论:

      ①函数图象关于y轴对称

      ②有些函数既有最大值,同时也有最小值

      ③存在某个函数,当 (m为正数)时,y随x的增大而增大,当 时,y随x的增大而减小

      ④函数图象与x轴公共点的个数只可能是0个或2个或4个

      所有符合题意结论的序号是

    4. (4) 结合函数图象,解决问题:若关于x的方程 有一个实数根为3,则该方程其它的实数根为
  • 26. (2020九上·西城期末) 在平面直角坐标系 中,抛物线
    1. (1) 若该抛物线与直线 交于A,B两点,点B在y轴上.求该抛物线的表达式及点A的坐标;
    2. (2) 横坐标为整数的点称为横整点.

      ①将(1)中的抛物线在A,B两点之间的部分记作 (不含A,B两点),直接写出 上的横整点的坐标;

      ②抛物线 与直线 交于C,D两点,将抛物线在C,D两点之间的部分记作 (不含C,D两点),若 上恰有两个横整点,结合函数的图象,求m的取值范围.

  • 27. (2020九上·西城期末) 是等边三角形,点P在 的延长线上,以P为中心,将线段 逆时针旋转n°( )得线段 ,连接

      

    1. (1) 如图,若 ,画出当 时的图形,并写出此时n的值;
    2. (2) M为线段 的中点,连接 .写出一个n的值,使得对于 延长线上任意一点P,总有 ,并说明理由.
  • 28. (2020九上·西城期末) 对于给定的 ,我们给出如下定义:若点M是边 上的一个定点,且以M为圆心的半圆上的所有点都在 的内部或边上,则称这样的半圆为 边上的点M关于 的内半圆,并将半径最大的内半圆称为点M关于 的最大内半圆.若点M是边 上的一个动点(M不与B,C重合),则在所有的点M关于 的最大内半圆中,将半径最大的内半圆称为 关于 的内半圆.

    1. (1) 在 中,

      ①如图1,点D在边 上,且 ,直接写出点D关于 的最大内半圆的半径长;

      ②如图2,画出 关于 的内半圆,并直接写出它的半径长;

    2. (2) 在平面直角坐标系 中,点E的坐标为 ,点P在直线 上运动(P不与O重合),将 关于 的内半圆半径记为R,当 时,求点P的横坐标t的取值范围.

微信扫码预览、分享更方便

试卷信息