当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省台州市三区三校(椒江五中)2021届九年级上学期数学期...

更新时间:2024-07-31 浏览次数:262 类型:期中考试
一、 选择题(每题4分,共40分)
二、填空题(本大题共6小题,每小题5分,共30分)
三、 解答题(共80分,第17-19题各8分,第20,21题各9分,第22,23题各12分,第24题14分)
  • 17. (2020九上·台州期中) 解下列方程
    1. (1) x2-4x-5=0
    2. (2) 2(x-3)2=3(x-3)
  • 18. (2020九上·台州期中) 图①,图②,图③均为4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长都为1.线段AB的端点均在格点上.按要求在图①,图②,图③中画图.

    1. (1) 在图①中,以线段AB为斜边画一个等腰直角三角形,且直角的顶点为格点;
    2. (2) 在图②中,以线段AB为斜边画一个直角三角形,使其面积为2,且直角的顶点为格点;
    3. (3) 在图③中,画一个四边形,使所画四边形是中心对称图形,不是轴对称图形,且其余两个顶点均为格点.
  • 19. (2020九上·台州期中) 为响应区“美丽台州,美化环境”的号召,某校开展“美丽台州 清洁校园”的活动,该校经过精心设计,计算出需要绿化的面积为498m2 , 绿化150m2后,为了更快的完成该项绿化工作,将每天的工作量提高为原来的1.2倍.结果一共用20天完成了该项绿化工作.
    1. (1) 该项绿化工作原计划每天完成多少m2
    2. (2) 在绿化工作中有一块面积为170m2的矩形场地,矩形的长比宽的2倍少3m,请问这块矩形场地的长和宽各是多少米?
  • 20. (2020九上·台州期中) 如图,已知AB是⊙O中一条固定的弦,点C是优弧AB上一个动点(点C不与A,B重合).

    1. (1) 设∠ACB的角平分线与劣弧AB交于点P,试猜想点P在AB⌢上的位置是否会随点C的运动而发生变化?请说明理由;
    2. (2) 如图②,设A′B′=8,⊙O的半径为5,在(1)的条件下,四边形ACBP的面积是否为定值?若是定值,请求出这个定值;若不是定值,试确定四边形A′C′B′P′的面积的取值范围.
  • 21. (2020九上·台州期中) 一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.

    1. (1) 将抛物线放在所给的直角坐标系中(如图2所示),其表达式是 的形式。请根据所给的数据求出a,c的值。
    2. (2) 求支柱MN的长度。
    3. (3) 拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由。
  • 22. (2020九上·台州期中) 如图①,在△ABC中,∠BAC=90∘,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90∘,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.

    1. (1) 请直接写出线段AF,AE的数量关系
    2. (2) 将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论。
  • 23. (2020九上·台州期中) 如图,已知AB是⊙O的直径,C是圆周上的动点,P是优弧ABC的中点.

    1. (1) 如图①,求证:OP∥BC;
    2. (2) 如图②,PC交AB于点D,当△ODC是等腰三角形时,求∠PAO的度数.
  • 24. (2020九上·台州期中) 定义:对于给定的两个函数,任取自变量x的一个值,当 时,它们对应的函数值互为相反数;当 时,它们对应的函数值相等,我们称这样的两个函数互为相关函数。例如:一次函数 ,它们的相关函数为
    1. (1) 已知点 在一次函数 的相关函数的图象上,求a的值。
    2. (2) 已知二次函数

      ①当点 在这个函数的相关函数的图象上时,求m的值;

      ②当 时,求函数 的相关函数的最大值和最小值。

    3. (3) 在平面直角坐标系中,点M,N的坐标分别为 ,连结MN。直接写出线段MN与二次函数 的相关函数的图象有两个公共点时n的取值范围。

微信扫码预览、分享更方便

试卷信息