当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省湖州市第四中学教育集团2021届九年级上学期数学期中联...

更新时间:2024-07-31 浏览次数:190 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 17. (2021九上·甘州期末) 已知等腰三角形ABC,如图.

    1. (1) 用直尺和圆规作△ABC的外接圆;
    2. (2) 设△ABC的外接圆的圆心为O,若∠BOC=128°,求∠BAC的度数.
  • 18. (2020九上·湖州期中) 如图,有一座抛物线形拱桥,桥下面在正常水位时 宽20米,当水位上升3米时就达到警戒线 ,这时水面宽度为10米.

    1. (1) 在如图所示的坐标系中,求抛物线的解析式;
    2. (2) 若洪水到来时,水位以每小时0.2米的速度上升,从警戒线开始,再持续多少小时才能到桥拱顶?
  • 19. (2020九上·寻乌期末) 在湖州创建国家卫生文明城市的过程中,张辉和夏明积极参加志愿者活动,当时有下列四个志愿者工作岗位供他们选择:

    ①清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用 表示)。

    ②宣传类岗位:垃圾分类知识宣传;交通安全知识宣传(分别用 表示)。

    1. (1) 张辉同学从四个岗位中随机选取一个报名,恰好选择清理类岗位概率为是
    2. (2) 若张辉和夏明各随机从四个岗位中选一个报名,请你利用树状图或列表法求出他们恰好都选择同一个岗位的概率.
  • 20. (2020九上·吴兴期中) 如图,二次函数y=﹣x2+4x+m的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点D,点A的坐标是(﹣1,0),C是抛物线的顶点.

    1. (1) 求二次函数的解析式;
    2. (2) 当0<x<5时,求y的取值范围;
    3. (3) 连接BC,线段OD上有一点E,点E关于抛物线的对称轴的对称点F恰好在线段BC上,求点E的坐标.
  • 21. (2020九上·湖州期中) 如图,圆内接四边形ABCDAB是⊙O的直径,ODABC于点E

    1. (1) 求证:△BCD为等腰三角形;
    2. (2) 若BE=4,AC=6,求DE
  • 22. (2020九上·吴兴期中) 某宾馆有 50 个房间供游客居住,当每个房间的定价为每天 160 元时,房间会全部住满,当每个房间每天的定价每增加 10 元时,就会有一个房间空闲,如果游客居住房间, 宾馆需对每个房间每天支出 20 元的各种费用.设每个房间的定价为 x 元时,相应的住房数为 y 间.
    1. (1) 求 y 与 x 的函数关系式;
    2. (2) 定价为多少时宾馆当天利润 w 最大?并求出一天的最大利润;
    3. (3) 若老板决定每住进去一间房就捐出 a 元(a≤30)给当地福利院,同时要保证房间定价 x 在 160 元至 350 元之间波动时(包括两端点),利润 w 随 x 的增大而增大,求 a 的取值范围
  • 23. (2020九上·吴兴期中) 定义:如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“特征轴三角形”.显然,“特征轴三角形”是等腰三角形.
    1. (1) 抛物线y=x2﹣2 x对应的“特征轴三角形”是;抛物线y= x2﹣2对应的“特征轴三角形”是.(把下列较恰当结论的序号填在横线上:①腰与底边不相等的等腰三角形;②等边三角形;③非等腰的直角三角形;④等腰直角三角形.)
    2. (2) 若抛物线y=ax2+2ax﹣3a对应的“特征轴三角形”是直角三角形,请求出a的值.
    3. (3) 如图,面积为12 的矩形ABCO的对角线OB在x轴的正半轴上,AC与OB相交于点E,若△ABE是抛物线y=ax2+bx+c的“特征轴三角形”,求此抛物线的解析式.

  • 24. (2021九上·松山期末) 如图,已知抛物线 经过 两点,与x轴的另一个交点为C,顶点为D,连结CD.

    1. (1) 求该抛物线的表达式;
    2. (2) 点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.

      ①当点P在直线BC的下方运动时,求 的面积的最大值;

      ②该抛物线上是否存在点P,使得 若存在,求出所有点P的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息