当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省无锡市东林中学教育集团2021届九年级上学期数学期中联...

更新时间:2021-01-14 浏览次数:183 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 19. (2020九上·无锡期中) 解下列方程:
    1. (1) (x+1)2-4=0               
    2. (2) y(y-1)=2(y-1)
    3. (3) 2x2 -3x -1=0               
    4. (4) (x+3)(x-1)= -4
  • 20. (2020九上·无锡期中) 已知关于x的方程x2+8x+12-a=0有两个不相等的实数根.
    1. (1) 求a的取值范围;
    2. (2) 当a取满足条件的最小整数时,求出方程的解.
  • 21. (2020九上·无锡期中) 已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(1,1)(正方形网格中每个小正方形的边长是1个单位长度).

    ( 1 )画出△ABC向下平移4个单位长度得到的△A1B1C1

    ( 2 )以点B为位似中心,在网格内画出△A2B2C2 , 使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ▲ 

    ( 3 )△A2B2C2的面积是 ▲ 平方单位.

  • 22. (2020九上·无锡期中) 如图,在矩形ABCD中,AB=6,BC=15,点E在BC边上,DF⊥AE,垂足为F.

    1. (1) 求证:△ABE∽△DFA;
    2. (2) 若DF=9,求线段BE的长.
  • 23. (2020九上·无锡期中) 如图,⊙O的圆心O在△ABC的边AC上,AC与⊙O分别交于C,D两点,⊙O与边AB相切,且切点恰为点B.

    1. (1) 求证:∠A+2∠C=90°;
    2. (2) 若∠A=30°,⊙O的半径为2,求图中阴影部分的面积.
  • 24. (2022·于都模拟) 如图,AB是圆O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB与圆O交于点F,在CD上取一点E,使得EF=EC.

    1. (1) 求证:EF是圆O的切线;
    2. (2) 若D是OA的中点,AB=4,求CF的长.
  • 25. (2021九上·三元月考) 新冠疫情蔓延全球,口罩成了人们的生活必须品,某药店销售普通口罩和N95口罩,今年8月份的进价如下表:

    普通口罩

    N95口罩

    进价(元/包)

    8

    20

    1. (1) 计划N95口罩每包售价比普通口罩贵16元,7包普通口罩和3包N95口罩总售价相同,求普通口罩和N95口罩每包售价;
    2. (2) 按(1)中售价销售一段时间后发现普通口罩的日均销售量为120包,当每包售价降价1元时,日均销售量增加20包,该药店秉承让利于民的原则,对普通口罩进行降价销售,但要保证当天的利润为320元,求此时普通口罩每包售价;
    3. (3) 疫情期间,该药店进货2万包N95口罩,进价不变,店长向当地医院捐赠了a包 ,该款口罩,剩余的N95口罩向市民销售,若这2万包口罩的利润等于 ,则N95口罩每包售价是元.(直接写出答案,售价为整数元)
  • 26. (2020九上·无锡期中) 某数学课外兴趣小组成员在研究下面三个有联系的问题,请你帮助他们解决:

     

    1. (1) 如图1,矩形ABCD中,AB=8,BC=6,将矩形对折,使得点B、点D重叠,折痕为EF,过点F作AB的垂线交AB于点G,求EF的长;
    2. (2) 如图2,矩形ABCD中,AB=a,BC=b,点E,F分别在AB,DC上,点G,H分别在AD,BC上且EF⊥GH,求 的值;
    3. (3) 如图3,四边形ABCD中,∠ABC=90°,AB=AD=8,BC=CD=4,AM⊥DN,点M,N分别在边BC,AB上,求 的值.
  • 27. (2020九上·无锡期中) 在平面直角坐标系xOy中,⊙C的半径为r(r>1),点P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:过圆心C的任意直线CP与⊙C交于点A,B,若满足|PA﹣PB|=2,则称点P为⊙C的“完美点”,如图点P为⊙C的一个“完美点”.

     

    1. (1) 当⊙O的半径为2时

      ①点M( ,0) ▲ ⊙O的“完美点”,点(﹣ ,﹣ ) ▲ ⊙O的“完美点”;(填“是”或者“不是”)

      ②若⊙O的“完美点”P在直线y= x上,求PO的长及点P的坐标;

    2. (2) 设圆心C的坐标为(s,t),且在直线y=﹣2x+1上,⊙C半径为r,若y轴上存在⊙C的“完美点”,求t的取值范围.

微信扫码预览、分享更方便

试卷信息