当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省无锡市南长实验、侨谊教育集团2021届九年级上学期数学...

更新时间:2024-07-13 浏览次数:164 类型:期中考试
一、单选题
二、填空题
三、解答题
    1. (1) (3x-1)2= (x+1)2             
    2. (2) x2+10x-7=0  (用配方法)
    3. (3) x2+3x+1=0 (用公式法)       
    4. (4) (x+5) (x-1)=7
  • 20. (2020九上·无锡期中) 如图,已知四边形ABCD是矩形,点E是CD的中点,

    1. (1) 画圆O,使该圆O过点A、B、E(保留作图痕迹);
    2. (2) 若AB=2,AD=3,则(1)中所画圆O的半径为.
  • 21. (2020九上·无锡期中) 已知关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根.
    1. (1) 求k的取值范围;
    2. (2) 若方程的两个不相等的实数根是a,b,求 的值.
  • 22. (2020九上·义马期中) 如图,四边形ABCD内接于⊙O,AC平分∠BAD,延长DC交AB的延长线于点E.


    1. (1) 若∠ADC=86°,求∠CBE的度数;
    2. (2) 若AC=EC,求证:AD=BE
  • 23. (2020九上·无锡期中) 某景区商店以2元的批发价进了一批纪念品.经调查发现,每个定价3元,每天可以能卖出500件,而且定价每上涨0.1元,其销售量将减少10件.根据规定:纪念品售价不能超过批发价的2.5倍.
    1. (1) 当每个纪念品定价为3.6元时,商店每天能卖出件;
    2. (2) 如果商店要实现每天800元的销售利润,那该如何定价?
  • 24. (2021九上·北流期中) 如图, 中, ,一动点P从点C出发沿着 方向以 的速度运动,另一动点Q从A出发沿着 边以 的速度运动,P,Q两点同时出发,运动时间为 .

    1. (1) 若 的面积是 面积的 ,求t的值?
    2. (2) △PCQ的面积能否为 面积的一半?若能,求出t的值;若不能,说明理由.
  • 25. (2021·谷城模拟) 如图,在 中, 是斜边 上的中线,以 为直径的 分别交 于点 ,过点 ,垂足为

    1. (1) 若 的半径为 ,求 的长;
    2. (2) 求证: 相切.
  • 26. (2020九上·无锡期中) 如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B重合),连接DA,DB,DC.

    1. (1) 求证:DC是∠ADB的平分线;
    2. (2) 设四边形ADBC的面积为S,线段DC的长为x,试用含x的代数式表示S;
    3. (3) 若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.
  • 27. (2020九上·无锡期中) 三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.

    1. (1) 如图1,∠E是△ABC中∠A的遥望角,若∠A=α,则∠E=.(请用含α的代数式表示)
    2. (2) 如图2,四边形ABCD内接于⊙O, ,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.
    3. (3) 如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.求∠AED的度数.

微信扫码预览、分享更方便

试卷信息