当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湖南省长沙市天心区明德教育集团2019-2020学年九年级上...

更新时间:2021-03-04 浏览次数:185 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 20. (2023九上·吉林开学考) 先化简,再求值:(1+ )÷ ,其中a=2.
  • 21. (2020九上·天心期末) 为响应市政府关于“垃圾不落地 市区更美丽”的主题宣传活动,郑州外国语中学随机调查了部分学生对垃圾分类知识的掌握情况,调查选项分为“A:非常了解;B:比较了解;C:了解较少;D:不了解 ”四种,并将调查结果绘制成以下两幅不完整的统计图 请根据图中提供的信息,解答下列问题;

    1. (1) 求 ,并补全条形统计图
    2. (2) 若我校学生人数为1000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有名;
    3. (3) 已知“非常了解”的是3名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请画树状图或列表的方法,求恰好抽到1男1女的概率.
  • 22. (2020九上·天心期末) 已知:如图,四边形ABCD是矩形,过点DDFACBA的延长线于点F

    1. (1) 求证:四边形ACDF是平行四边形;
    2. (2) 若AB=3,DF=5,求△AEC的面积.
  • 23. (2020九上·天心期末) 2019年国庆档上映了多部优质国产影片,其中《我和我的祖国》、《中国机长》这两部影片不管是剧情还是制作,都非常值得一看.《中国机长》是根据真实故事改编的,影片中全组机组人员以自己的实际行动捍卫安全、呵护生命,堪称是“新时代的英雄”、“民航奇迹的创造者”,据统计,某地10月1日该影片的票房约为1亿,10月3日的票房约为1.96亿.
    1. (1) 求该地这两天《中国机长》票房的平均增长率;
    2. (2) 电影《我和我的祖国》、《中国机长》的票价分别为40元、45元,10月份,某企业准备购买200张不同时段的两种电影票,预计总花费不超过8350元,其中《我和我的祖国》的票数不多于《中国机长》票数的2倍,请求出该企业有多少种购买方案,并写出最省钱的方案及所需费用.
  • 24. (2020九上·天心期末) 如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B , 连接AD

    1. (1) 求证:CD是⊙O的切线;
    2. (2) 若ADCDAB=10,AD=8,求AC的长;
    3. (3) 如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出ACECBC之间的数量关系并证明.
  • 25. (2022八下·五华期末) 定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.如图1,∠ABC=∠ADC=90°,四边形ABCD是损矩形,则该损矩形的直径是线段AC . 同时我们还发现损矩形中有公共边的两个三角形角的特点:在公共边的同侧的两个角是相等的.如图1中:△ABC和△ABD有公共边AB , 在AB同侧有∠ADB和∠ACB , 此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC , 在CB同侧有∠BAC和∠BDC , 此时∠BAC=∠BDC

    1. (1) 请在图1中再找出一对这样的角来:
    2. (2) 如图2,△ABC中,∠ABC=90°,以AC为一边向外作菱形ACEFD为菱形ACEF对角线的交点,连接BD , 当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.
    3. (3) 在第(2)题的条件下,若此时AB=6,BD=8 ,求BC的长.
  • 26. (2020九上·天心期末) 如图1,抛物线y=﹣ x2+bx+c的对称轴为直线x=﹣ ,与x轴交于点A和点B(1,0),与y轴交于点C , 点D为线段AC的中点,直线BD与抛物线交于另一点E , 与y轴交于点F

    1. (1) 求抛物线的解析式;
    2. (2) 点P是直线BE上方抛物线上一动点,连接PDPF , 当△PDF的面积最大时,在线段BE上找一点G , 使得PG EG的值最小,求出PG EG的最小值.
    3. (3) 如图2,点M为抛物线上一点,点N在抛物线的对称轴上,点K为平面内一点,当以AMNK为顶点的四边形是正方形时,请求出点N的坐标.

微信扫码预览、分享更方便

试卷信息