当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市通州区2020-2021学年九年级上学期数学期末试卷

更新时间:2024-07-13 浏览次数:209 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 17. (2020九上·通州期末) 如图, 交于 点, ,求 的长.

  • 18. (2020九上·通州期末) 二次函数 图象上部分点的横坐标x,纵坐标y的对应值如下表:

    x

    y

    1. (1) 该二次函数的对称轴为
    2. (2) 求出二次函数的表达式.
  • 19. (2020九上·通州期末) 下面是小付设计的“过圆上一点作圆的切线”的尺规作图过程.

    已知:如图,⊙O及⊙O上一点P.

    求作:过点P的⊙O的切线.

    作法:如图,

    ①作射线OP;

    ②以点P为圆心,PO为半径作⊙P,与射线OP交于另一点B;

    ③分别以点O,点B为圆心,大于PO长为半径作弧,两弧交射线OP上方于点D;

    ④作直线PD;

    则直线PD即为所求.

    根据小付设计的尺规作图过程,

    1. (1) 使用直尺和圆规,补全图形;(保留作图痕迹)
    2. (2) 完成下面的证明:

      证明:∵

      )(填推理的依据).

      又∵ OP是⊙O的半径,

      ∴ PD是⊙O的切线()(填推理的依据).

  • 20. (2020九上·通州期末) 在平面直角坐标系 中,直线 与反比例函数 交于点

    1. (1) 求出反比例函数表达式及 的值;
    2. (2) 根据函数图象,直接写出不等式 的解集.
  • 21. (2020九上·通州期末) 如图,在 中, .以 为直径作⊙ ,交 于点 ,连接 .作 平分线,交 于点 ,交 于点

    1. (1) 求证:
    2. (2) 若 ,求 的长.
  • 22. (2020九上·通州期末) 有这样一个问题:探究函数 的图象与性质.

    嘉瑶根据学习函数的经验,对函数 的图象与性质进行了探究.

    下面是嘉瑶的探究过程,请补充完整:

    1. (1) 函数 的图象与y轴交点;(填写“有”或“无”)
    2. (2) 下表是y与x的几组对应值:

      x

       y

       …

       

      n

       

       …

      则n的值为

    3. (3) 如图,在平面直角坐标系xOy中,嘉瑶描出各对对应值为坐标的点.请你根据描出的点,帮助嘉瑶画出该函数的大致图象;

    4. (4) 请你根据探究二次函数与一元二次方程关系的经验,结合图象直接写出方程 的根约为.(结果精确到0.1)
  • 23. (2020九上·通州期末) 如图,将正方形 绕点 顺时针旋转 ,得到正方形 .连接 ,与正方形交于点 ,连接

    1. (1) 求 的值(用 表示);
    2. (2) 求证:
    3. (3) 写出线段 之间的数量关系,并证明.
  • 24. (2020九上·通州期末) 在平面直角坐标系 中,抛物线 轴交于点 ,与 轴交于点

    1. (1) 求抛物线对称轴;
    2. (2) 求点 纵坐标(用含有 的代数式表示);
    3. (3) 已知点 .将点 向下移动一个单位,得到点 .若抛物线与线段 只有一个交点,求 的取值范围.
  • 25. (2020九上·通州期末) 为平面直角坐标系 中一点,点 为图形 上一点.我们将线段 长度的最大值与最小值之间的差定义为点 视角下图形 的“宽度”.

    1. (1) 如图,⊙ 半径为2,与 轴, 轴分别交于点 ,点

      ①在点 视角下,⊙ 的“宽度”为,线段 的“宽度”为

      ②点 轴上一点.若在点 视角下,线段 的“宽度”为 ,求 的取值范围:

    2. (2) ⊙ 的圆心在x轴上,半径为 ,直线 与x轴,y轴分别交于点 .若线段 上存在点 ,使得在点 视角下,⊙ 的“宽度”可以为 ,求圆心 的横坐标 的取值范围.

微信扫码预览、分享更方便

试卷信息