当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省无锡市锡山区锡北片2021年数学中考一模试卷

更新时间:2024-07-13 浏览次数:157 类型:中考模拟
一、单选题
二、填空题
三、解答题
    1. (1)
    2. (2) 化简: .
    1. (1) 解方程:
    2. (2) 解不等式组 .
  • 21. (2022·柳南模拟) 如图,点 在一条直线上, .

    1. (1) 求证:
    2. (2) 连接 ,求证:四边形 是平行四边形.
  • 22. (2021·锡山模拟) 在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.
    1. (1) 搅匀后从中随机抽出1支签,抽到1号签的概率是
    2. (2) 搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.
  • 23. (2022·禄劝模拟) 为了提高学生的综合素养,某校开设了五门手工活动课.按照类别分为:A“剪纸”、B“沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如下两幅不完整的统计图.

       

    根据以上信息,回答下列问题:

    1. (1) 本次调查的样本容量为;统计图中的
    2. (2) 通过计算补全条形统计图;
    3. (3) 该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.
  • 24. (2021·杭州模拟) 如图,AB为⊙O的直径,C为BA延长线上一点,CD是⊙O的切线,D为切点,OF⊥AD于点E,交CD于点F.

    1. (1) 求证:∠ADC=∠AOF;
    2. (2) 若sinC= ,BD=8,求EF的长.
  • 25. (2021·锡山模拟) 如图,在Rt△ABC中,∠C=90°,点D是AB的中点,AC<BC.

    1. (1) 试用无刻度的直尺和圆规 , 在BC上作一点E,使得直线ED平分ABC的周长;(不要求写作法,但要保留作图痕迹).
    2. (2) 在(1)的条件下,若DE分Rt△ABC面积为1﹕2两部分,请探究AC与BC的数量关系.
  • 26. (2022·云南模拟) 某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件

    1. (1) 如图,设第x(0<x≤20)个生产周期设备售价z万元/件,zx之间的关系用图中的函数图象表示,求z关于x的函数解析式(写出x的范围).
    2. (2) 设第x个生产周期生产并销售的设备为y件,yx满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂在第几个生产周期创造的利润最大?最大为多少万元?(利润=收入-成本)
  • 27. (2021·锡山模拟) 九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数 的图象与性质,其探究过程如下:

    1. (1) 绘制函数图象,如图.

      列表:下表是 的几组对应值,其中   ▲  .

      -3

      -2

      -1

      1

      2

      3

      1

      2

      4

      4

      2

      描点:根据表中各组对应值 ,在平面直角坐标系中描出了各点;

      连线:用平滑的曲线顺次连接各点,画出了部分图象请你把图象补充完整;

    2. (2) 通过观察图,写出该函数的两条性质;

    3. (3) ①观察发现:如图.若直线 交函数 的图象于 两点,连接 ,过点 轴于 .则

      ②探究思考:将①中“直线 ”改为“直线 ”,其他条件不变,则

      ③类比猜想:若直线 交函数 的图象于 两点,连接 ,过点 轴于 ,则 .

  • 28. (2021·锡山模拟) 在平面直角坐标系中,抛物线 的顶点为N.

    1. (1) 若此抛物线过点 ,求抛物线的解析式;
    2. (2) 在(1)的条件下,若抛物线与y轴交于点B,连接 ,C为抛物线上一点,且位于线段 的上方,过C作 垂直x轴于点D, 于点E,若 ,求点C坐标;
    3. (3) 已知点 ,且无论k取何值,抛物线都经过定点H,当 时,求抛物线的解析式.

微信扫码预览、分享更方便

试卷信息