当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市门头沟区2020年中考数学一模试卷

更新时间:2021-04-22 浏览次数:253 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 19. (2020·门头沟模拟) 已知关于x的一元二次方程 有两个不相等的实数根.
    1. (1) 求m的取值范围;
    2. (2) 如果m是非负整数,且该方程的根是整数,求m的值.
  • 20. (2020·门头沟模拟) 如图,在Rt△ABC中,∠ACB=90°,CDABDCEABEBCD , 连接DEBC于点O

    1. (1) 求证:DE=BC
    2. (2) 如果AC=5, ,求DE的长.
  • 21. (2020·门头沟模拟) 在推进城乡生活垃圾分类的行动中,为了了解社区居民对垃圾分类知识的掌握情况,某社区随机抽取40名居民进行测试,并对他们的得分数据进行收集、整理、描述和分析.下面给出了部分信息:

    a . 社区40名居民得分的频数分布直方图:(数据分成5组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x<100):

    b . 社区居民得分在80≤x<90这一组的是:

    80  80  81  82  83  84  84  85  85  85  86  86  87  89

    c.40个社区居民的年龄和垃圾分类知识得分情况统计图:

    d . 社区居民甲的垃圾分类知识得分为89分.

    根据以上信息,回答下列问题:

    1. (1) 社区居民甲的得分在抽取的40名居民得分中从高到低排名第
    2. (2) 在垃圾分类得分比居民甲得分高的居民中,居民年龄最大约是岁;
    3. (3) 下列推断合理的是

      ①相比于点A所代表的社区居民,居民甲的得分略高一些,说明青年人比老年人垃圾分类知识掌握得更好一些;

      ②垃圾分类知识得分在90分以上的社区居民年龄主要集中在15岁到35岁之间,说明青年人垃圾分类知识掌握更为全面,他们可以向身边的老年人多宣传垃圾分类知识.

  • 22. (2020·门头沟模拟) 如图,∠APB , 点C在射线PB上,PC为⊙O的直径,在∠APB内部且到∠APB两边距离都相等的所有的点组成图形M , 图形M交⊙OD , 过点D作直线DEPA , 分别交射线PAPBEF

    1. (1) 根据题意补全图形;
    2. (2) 求证:DE是⊙O的切线;
    3. (3) 如果PC=2CF , 且 ,求PE的长.
  • 23. (2020·门头沟模拟) 疫情期间,甲、乙、丙、丁4名同学约定周一至周五每天做一组俯卧撑.为了增加趣味性,他们通过游戏方式确定每个人每天的训练计划.

    首先,按如图方式摆放五张卡片,正面标有不同的数字代表每天做俯卧撑的个数,反面标有 便于记录.

    具体游戏规则如下:

    甲同学:同时翻开 ,将两个数字进行比较,然后由小到大记录在表格中, 按原顺序记录在表格中;

    乙同学:同时翻开 ,将三个数字进行比较,然后由小到大记录在表格中, 按原顺序记录在表格中;

    以此类推,到丁同学时,五张卡片全部翻开,并由小到大记录在表格中.

    下表记录的是这四名同学五天的训练计划:

    星期一

    星期二

    星期三

    星期四

    星期五

    甲同学

    乙同学

    丙同学

    丁同学

    根据记录结果解决问题:

    1. (1) 补全上表中丙同学的训练计划;
    2. (2) 已知每名同学每天至少做30个,五天最多做180个.

      ①如果 ,那么 所有可能取值为

      ②这四名同学星期做俯卧撑的总个数最多,总个数最多为个.

  • 24. (2020·门头沟模拟) 如图,点M是⊙O直径AB上一定点,点C是直径AB上一个动点,过点 交⊙O于点 ,作射线DM交⊙O于点N , 连接BD

    1. (1) 小勇根据学习函数的经验,对线段ACBDMN的长度之间的数量关系进行了探究.

      下面是小勇的探究过程,请补充完整:

      对于点CAB的不同位置,画图,测量,得到了线段ACBDMN的长度的几组值,如下表:
       

      位置1

      位置2

      位置3

      位置4

      位置5

      位置6

      位置7

      AC/cm

      0.00

      1.00

      2.00

      3.00

      4.00

      5.00

      6.00

      BD/cm

      6.00

      5.48

      4.90

      4.24

      3.46

      2.45

      0.00

      MN/cm

      4.00

      3.27

      2.83

      2.53

      2.31

      2.14

      2.00

      ACBDMN的长度这三个量中,如果选择的长度为自变量,那么的长度和的长度为这个自变量的函数;

    2. (2) 在同一平面直角坐标系xOy中,画出(1)中确定的函数的图象;

    3. (3) 结合函数图象解决问题:当BD=MN时,线段AC的长度约为cm(结果精确到0.1).
  • 25. (2020·门头沟模拟) 在平面直角坐标系xOy中,一次函数 的图象与y轴交于点A , 过点 ,且平行于x轴的直线与一次函数 的图象,反比例函数 的图象分别交于点CD

    1. (1) 求点D 的坐标(用含m的代数式表示);
    2. (2) 当m = 1时,用等式表示线段BDCD长度之间的数量关系,并说明理由;
    3. (3) 当BDCD时,直接写出m的取值范围.
  • 26. (2020·门头沟模拟) 在平面直角坐标系xOy中,一次函数 的图象与y轴交于点A , 与抛物线 的对称轴交于点B , 将点A向右平移5个单位得到点C , 连接ABAC得到的折线段记为图形G

    1. (1) 求出抛物线的对称轴和点C坐标;
    2. (2) ①当 时,直接写出抛物线 与图形G的公共点个数.

      ②如果抛物线 与图形G有且只有一个公共点,求出a的取值范围.

  • 27. (2020·门头沟模拟) 在△ABC中,∠ACB=90°,∠CAB=30°,点DAB上,连接CD , 并将CD绕点D逆时针旋转60°得到DE , 连接AE

    1. (1) 如图1,当点DAB中点时,直接写出DEAE长度之间的数量关系;
    2. (2) 如图2,当点D在线段AB上时,

      ① 根据题意补全图2;

      ② 猜想DEAE长度之间的数量关系,并证明.

  • 28. (2020·门头沟模拟) 对于平面直角坐标系xOy中的任意点 ,如果满足 (x≥0,a为常数),那么我们称这样的点叫做“特征点”.

    1. (1) 当2≤a≤3时,

      ①在点 中,满足此条件的特征点为

      ②⊙W的圆心为 ,半径为1,如果⊙W上始终存在满足条件的特征点,请画出示意图,并直接写出m的取值范围

    2. (2) 已知函数 ,请利用特征点求出该函数的最小值.

微信扫码预览、分享更方便

试卷信息