当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山东省德州市2021届高三数学二模试卷

更新时间:2024-07-13 浏览次数:199 类型:高考模拟
一、单选题
二、多选题
  • 9. (2021·德州模拟) 已知复数 为虚数单位),下列说法正确的是(    ).
    A . 对应的点在第三象限 B . 的虚部为 C . D . 满足 的复数 对应的点在以原点为圆心,半径为2的圆上
  • 10. (2021·德州模拟) 已知函数 ,若函数 的部分图像如图所示,则下列说法正确的是(   ).

    A . 函数 的图像关于直线 对称 B . 函数 的图像关于点 对称 C . 将函数 的图像向左平移 个单位可得函数 的图像 D . 函数 在区间 上的值域为
  • 11. (2021·德州模拟) 已知椭圆 的左、右焦点分别为 ,点 在椭圆上,点 是圆 关于直线 对称的曲线 上任意一点,若 的最小值为 ,则下列说法正确的是(    ).
    A . 椭圆 的焦距为2 B . 曲线 过点 的切线斜率为 C . 为椭圆 上关于原点对称的异于顶点和点 的两点,则直线 斜率之积为 D . 的最小值为2
  • 12. (2021·德州模拟) 已知函数 ,则(    ).
    A . B . 有两个不相等的实根 ,则 C . D . 均为正数,则
三、填空题
四、解答题
  • 17. (2021·德州模拟) 在① ;② ;③ 这三个条件中任选一个,补充在下面问题中并作答.

    已知数列 的前 项和为 ,若 ,且满足______,设数列 的前 项和为 ,求 ,并证明 .

    (注:如果选择多个条件分别解答,则按第一个解答计分)

  • 18. (2021·德州模拟) 在锐角三角形 中,角A 的对边分别为 ,已知
    1. (1) 求A
    2. (2) 若 ,求 的取值范围.
  • 19. (2021·德州模拟) 如图,在四棱锥 中,底面 为矩形且 ,点 在底面上的射影为线段 上一点 ,且 上的一点且 ,过 做平面交 于点 于点 的中点.

    1. (1) 证明: 平面
    2. (2) 求平面 与平面 所成角的余弦值.
  • 20. (2021·德州模拟) 已知抛物线 ,过抛物线上第四象限的点 作抛物线的切线,与 轴交于点 .过 的垂线,交抛物线于 两点,交 于点

    1. (1) 求证:直线 过定点;
    2. (2) 若 ,求 的最小值.
  • 21. (2021·德州模拟) 2020年1月15日教育部制定出台了《关于在部分高校开展基础学科招生改革试点工作的意见》(也称“强基计划”),《意见》宣布:2020年起不再组织开展高校自主招生工作,改为实行强基计划,强基计划主要选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生,据悉强基计划的校考由试点高校自主命题,校考过程中通过笔试后才能进入面试环节.

    参考公式:

    ①线性相关系数 ,一般地,相关系数 的绝对值在 以上(含 )认为线性相关性较强;否则,线性相关性较弱.

    ②对于一组数据 ,… ,其回归直线方程 的斜率和截距的最小二乘法估计公式分别为:

    1. (1) 为了更好的服务于高三学生,某研究机构对随机抽取的5名高三学生的记忆力 和判断力 进行统计分析,得到下表数据

      6

      8

      9

      10

      12

      2

      3

      4

      5

      6

      请用相关系数说明该组数据中 之间的关系可用线性回归模型进行拟合,并求 关于 的线性回归方程

    2. (2) 现有甲、乙两所大学的笔试环节都设有三门考试科目且每门科目是否通过相互独立,若某考生报考甲大学,每门笔试科目通过的概率均为 ,该考生报考乙大学,每门笔试科目通过的概率依次为 ,其中 ,根据规定每名考生只能报考强基计划的一所试点高校,若以笔试过程中通过科目数的数学期望为依据作出决策,求该考生更希望通过乙大学笔试时 的取值范围.
  • 22. (2021·德州模拟) 已知函数 ,且曲线 在点 处的切线斜率为1.
    1. (1) 求实数 的值;
    2. (2) 设 在定义域内有两个不同的极值点 ,求实数 的取值范围;
    3. (3) 在(2)的条件下,令 ,总有 成立,求实数 的取值范围.

微信扫码预览、分享更方便

试卷信息