当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市门头沟区2021年中考数学一模试卷

更新时间:2024-07-13 浏览次数:216 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 19. (2021·门头沟模拟) 已知,如图, 是等边三角形, DEBC延长线上的一点, .求 的度数.

  • 21. (2021·门头沟模拟) 已知: CD平分

    求作:菱形DFCE , 使点FBC边上,点EAC边上,下面是尺规作图过程.

    作法:①分别以CD为圆心,大于 为半径作弧,两弧分别交于点MN

    ②作直线MN分别与ACBC交于点EF

    ③连接DEDFDCEF的交点记为点G;四边形DFCE为所求作的菱形.

    1. (1) 利用直尺和圆规依做法补全图形(保留作图痕迹);
    2. (2) 完成下面的证明.

      证明:

      DC的垂直平分线.

      平分

          ▲        ▲    (    )(填推理依据)

      同理可证

      四边形DFCE为平行四边形.

          ▲   

      四边形DFCE为菱形.

  • 22. (2021·门头沟模拟) 已知:如图,在菱形ABCD中, 于点E , 延长ADF , 使 ,连接CF

    1. (1) 求证:四边形EBCF是矩形;
    2. (2) 若 ,求AF的长.
  • 23. (2021·门头沟模拟) 在平面直角坐标系 中,正比例函数 与反比例函数 的图象相交于点

    1. (1) 求k的值;
    2. (2) 过点 平行于x轴的直线,分别与第一象限内的正比例函数 、反比例函数 的图象相交于 ,当 时,求 的取值范围.
  • 24. (2021·门头沟模拟) 如图,AB 的直径,C 上一点,DOB中点,过点DAB的垂线交AC的延长线于点FFD上有一点E

    1. (1) 求证:CE 的切线;
    2. (2) 如果 ,求AB的长.
  • 25. (2021·门头沟模拟) 2021年是中国共产党成立100周年,某中学面向学校全体师生征集“礼赞百年”活动作品,作品类别包括征文、书法、绘画.该中学学生小明统计了学校30个教学班上交活动作品的数量(单位:份),相关信息如下:

    a . 小明所在中学30个教学班上交作品的数量统计图:

    b . 小明所在中学各班学生上交作品数量的平均数如下:

    班级

    初一年级(10个班)

    初二年级(10个班)

    初三年级(10个班)

    平均数

    110

    80

    40

    1. (1) 该中学各班学生上交作品数量的平均数约为(结果取整数);
    2. (2) 已知该中学全体教师上交作品的数量恰好是该校各班级中,上交作品数量最多的班级与最少的班级的数量差,则全体教师上交作品的数量为份;
    3. (3) 记该中学初一年级学生上交作品数量的方差为 ,初二年级学生上交作品数量的方差为 ,初三年级学生上交作品数量的方差为 .直接写出 的大小关系.
  • 26. (2021·门头沟模拟) 在平面直角坐标系 中,已知关于x的二次函数

    1. (1) 求该二次函数的对称轴;
    2. (2) 若点 在抛物线 上,试比较mn的大小;
    3. (3) 是抛物线 上的任意两点,若对于 ,都有 ,求t的取值范围.
  • 27. (2022八下·惠山期末) 在正方形ABCD中,将边AD绕点A逆时针旋转 得到线段AEAECD延长线相交于点F , 过BCF于点G , 连接BE.

    1. (1) 如图1,求证:
    2. (2) 当( )时,依题意补全图2,用等式表示线段 之间的数量关系,并证明.
  • 28. (2021·门头沟模拟) 在平面直角坐标系 中, 的半径为1,点A是平面内一点,过点A的直线交 于点 B和点C ), ,我们把点 B称为点A关于 的“斜射点”.

    1. (1) 如图,在点 中,存在关于 的“斜射点”的是
    2. (2) 已知若 ,点关于 的“斜射点”为点B , 则点 B的坐标可以是.(写出两个即可)
    3. (3) 若点A直线 上,点A关于 的“斜射点”为 ,画出示意图,直接写出 k的取值范围.

微信扫码预览、分享更方便

试卷信息