当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省泰州市2021年中考数学仿真模拟试卷

更新时间:2021-05-31 浏览次数:170 类型:中考模拟
一、选择题
二、填空题
三、解答题
  • 17. (2021·闵行模拟) 解不等式组: .并把解集在数轴上表示出来.

  • 19. (2020·通州模拟) 国务院发布的《全民科学素质行动计划纲要实施方案(2016-2020年)》指出:公民科学素质是实施创新驱动发展战略的基础,是国家综合国力的体现.《方案》明确提出,2020年要将我国公民科学素质的数值提升到10%以上.为了解我国公民科学素质水平及发展状况,中国科协等单位已多次组织了全国范围的调查,以下是根据调查结果整理得到的部分信息.注:科学素质的数值是指具备一定科学素质的公民人数占公民总数的百分比.

    .2015和2018年我国各直辖市公民科学素质发展状况统计图如下:

    b.2015年和2018年我国公民科学素质发展状况按性别分类统计如下:

    2015年

    2018年

    c.2001年以来我国公民科学素质水平发展统计图如下:

    根据以上信息,回答下列问题:

    1. (1) 在我国四个直辖市中,从2015年到2018年,公民科学素质水平增幅最大的城市是,公民科学素质水平增速最快的城市是.注:科学素质水平增幅=2018年科学素质的数值一2015年科学素质的数值;科学素质水平增速=(2018年科学素质的数值一2015年科学素质的数值)÷2015年科学素质的数值.
    2. (2) 已知在2015年的调查样本中,男女公民的比例约为1:1,则2015年我国公民的科学素质水平为%(结果保留一位小数);由计算可知.在2018年的调查样本中.男性公民人数女性公民人数(填“多于”、“等于”或“少于”).
    3. (3) 根据截至2018年的调查数据推断,你认为“2020年我国公民科学素质提升到10%以上”的目标能够实现吗?请说明理由.
  • 20. (2020·龙城模拟) 一个不透明的口袋里装着分别标有数字﹣2,﹣1,1,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.
    1. (1) 从中任取一球,求所抽取的数字恰好为负数的概率为
    2. (2) 从中任取一球,将球上的数字记为x,然后再从剩余的球中任取一球,将球上的数字记为y,试用画树状图(或列表法)表示出点(x,y)所有可能的结果,并求点(x,y)在反比例函数 图象上的概率.
  • 21. (2021八下·宝应期末) 近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线 为全程 的普通道路,路线 包含快速通道,全程 ,走路线 比走路线 平均速度提高 ,时间节省 ,求走路线 的平均速度.
  • 22. (2019九上·海淀月考) 如图,已知直线l与⊙O无公共点,OAl于点A , 交⊙O于点P , 点B是⊙O上一点,连接BP并延长交直线l于点C , 使得AB=AC

    1. (1) 求证:AB是⊙O的切线;
    2. (2) 若BP=2 ,sin∠ACB ,求AB的长.
  • 23. (2020·凤县模拟) 长安塔,又名天人长安塔,位于西安世园会园区制高点小终南山上,是西安世园会的标志,也是园区的观景塔,游人可登塔俯瞰,全园美景尽收眼底。小军利用刚学过的测量知识来测量长安塔的高度,如图所示,他和学习小组的同学带着测量工具来到长安塔前,恰好发现有一个临时搭建的台子 ,小军在台子底部 处测得塔顶 的仰角为 ,然后又到台子的顶端 处测得塔顶 的仰角为 ,已知 均垂直于 ,求长安塔的高度 .(参考数据

  • 24. (2019九上·抚顺月考) 如图,在△ABC中,∠B=90°,AB=12米,BC=24米,动点P从点A开始沿边AB向B以2米/秒的速度运动(不与点B重合),动点Q从点B开始沿BC向C以4米/秒的速度运动(不与点C重合).如果P、Q分别从A、B同时出发,设运动时间为x秒,四边形APQC的面积为y平方米.

    1. (1) 求y与x之间的函数关系式,直接写出自变量x的取值范围;
    2. (2) 求当x为多少时,y有最小值,最小值是多少?
  • 25. (2021·路北模拟) 如图,在△ABC中,AB= ,∠B=45°,∠C=60°.

    1. (1) 求BC边上的高线长.
    2. (2) 点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.

      ①如图2,当点P落在BC上时,求∠AEP的度数.

      ②如图3,连结AP,当PF⊥AC时,求AP的长.

  • 26.

    已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.

    试探究下列问题:

    1. (1) 如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)

    2. (2) 如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;

    3. (3) 如图3,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论

  • 27. (2020·黄石模拟) 已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.

    1. (1) 求点C的坐标;
    2. (2) 若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
    3. (3) 若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M.问:是否存在这样的点P,使得四边形CDPM为等腰梯形,若存在,请求出此时点P的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息