当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广东省梅州市2021届高三下学期数学二模试卷

更新时间:2024-07-13 浏览次数:115 类型:高考模拟
一、单选题
二、多选题
  • 9. (2021·梅州模拟) ,下列不等式中正确的是(    )
    A . B . C . D .
  • 10. (2021·梅州模拟) 函数 ,下列选项中说法正确的是(    )
    A . B . 的图象关于 对称 C . ,则 D . 存在 ,使得
  • 11. (2021·梅州模拟) 如图,在正方体 中, ,点M,N分别在棱AB和 上运动(不含端点),若 ,下列命题正确的是(    )

    A . B . 平面 C . 线段BN长度的最大值为 D . 三棱锥 体积不变
  • 12. (2021·梅州模拟) 曲线 为四叶玫瑰线,它是一个几何亏格为零的代数曲线,这种曲线在苜蓿叶型立交桥的布局中有非常广泛的应用,首蓿叶型立交桥有两层,将所有原来需要穿越相交道路的转向都由环形匝道来实现,即让左转车辆行驶环道后自右侧切向汇入高速公路,四条环形匝道就形成了苜蓿叶的形状.给出下列结论正确的是(    )

    A . 曲线C只有两条对称轴 B . 曲线C经过5个整点(即横、纵坐标均为整数的点) C . 曲线C上任意一点到标原点O的距离都不超过2 D . 曲线C上的任一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为2
三、填空题
四、解答题
  • 17. (2021·梅州模拟) 的内角A,B,C的对边分别为a,b,C,已知
    1. (1) 求角C;
    2. (2) 若CD是角C的平分线, ,求CD的长.
  • 18. (2021·梅州模拟) 已知等差数列 的公差为 ,前n项和为 ,满足 成等比数列.
    1. (1) 求数列 的通项公式
    2. (2) 若 ,判断 的大小,并说明理由.
  • 19. (2021·梅州模拟) 2020年新型冠状病毒肺炎疫情席卷金球,我国在全力保障口罩、防护服等医疗物资供给基础上,重点开展医疗救治急需的呼吸机、心电监护仪等医疗设备的组织生产和及时供应,统筹协调医用物资生产企业高速生产,支援世界各国抗击肺炎疫情.我市某医疗器械公司转型升级,从9月1日开始投入呼吸机生产,该公司9月1目~9月9日连续9天的呼吸机日生产量为 (单位:百台 ),数据作了初步处理;得到如图所示的散点图.

    2.73

    19

    5

    285

    1095

    注:图中日期代码1~9分别对应9月1日~9月9日;表中

    参考公式:回归直线方程是

    参考数据:

    1. (1) 从9个样本点中任意选取2个,在2个样本点的生产量都不高于300台的条件下,求2个样本点都高于200台的概率;
    2. (2) 由散点图分析,样本点都集中在曲线 的附近,求y关于t的方程 ,并估计该公司从生产之日起,需要多少天呼吸机日生产量可超过500台.
  • 20. (2021高二上·洮南月考) 如图,在四棱锥 中,平面 平面ACDE, 是等边三角形,在直角梯形ACDE中, ,P是棱BD的中点.

    1. (1) 求证: 平面BCD;
    2. (2) 设点M在线段AC上,若平面PEM与平面EAB所成的锐二面角的余弦值为 ,求MP的长.
  • 21. (2021·梅州模拟) 已知函数
    1. (1) 当 时,求证:函数 没有零点;
    2. (2) 若存在两个不相等正实数 ,满足 ,且 ,求实数a的取值范围.
  • 22. (2021·梅州模拟) 在平面直角坐标系xOy中,椭圆 的两焦点与短轴的一个端点的连线构成等边三角形,直线 与以椭圆C的右焦点为圆心,椭圆C的长半轴长为半径的圆相切.
    1. (1) 求椭圆C的方程;
    2. (2) 是椭圆C的内接三角形,若坐标原点O为 的重心,求点B到直线MN距离的取值范围.

微信扫码预览、分享更方便

试卷信息