当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省温州市2020-2021学年第九年级下学期第二次学业调...

更新时间:2021-07-24 浏览次数:241 类型:中考模拟
一、选择题(本题有10小题,每小题4分,共40分。每小题只有一个选项是正确的,不选、多选、错选,均不给分)
二、填空题(本题有6小题,每小题5分,共30分)
三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)
    1. (1) 计算: -( )-1+|-5|
    2. (2) 化简:
  • 18. (2021·温州模拟) 已知:如图,在五边形ABCDE中,AB=AE,∠B=∠E,BC=ED。

    1. (1) 求证:△ABC≌△AED
    2. (2) 当AC∥DE,∠ADE=40°时,求∠ACD的度数。
  • 19. (2022九上·苍南开学考) 某商家对A、B两款学生手表的销售情况进行了为期五个月的调查统计,期间两款手表的月销售量统计图如图所示。

    1. (1) 请求出A款学生手表这五个月的总销售量以及B款学生手表4月-5月的销售量增长率;
    2. (2) 参考这五个月的销售情况,请对这两款手表未来的进货、销售方面提出你的建议。
  • 20. (2021·温州模拟) 在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的平行四边形为整点平行四边形。如图,已知整点A(2,5),B(3,2),请在所给网格区域内按要求画以A,B,C,D为顶点的整点平行四边形。

    1. (1) 在图1中画出点C,D,使点C的横、纵坐标之和等于点D的横、纵坐标之和的3倍;
    2. (2) 在图2中画出点C,D,使点C的橫、纵坐标之积等于点D的横、纵坐标之积的2倍。
  • 21. (2021·温州模拟) 如图,抛物线y=-x2+bx+c(b>0),交x轴于点A、B,交y轴于点C,已知A的横坐标为-1。

    1. (1) 求点B的坐标。(用含b的代数式表示)
    2. (2) 抛物线的对称轴交x轴于点D,连结BC,平移线段CB,使点C与D重合,此时点B恰好落在抛物线上,求b的值。
  • 22. (2021·鹿城模拟) 如图,AC是⊙O的直径,四边形ABCD是⊙O的内接四边形,点E在BC上,DE⊥BC于点F,DE交AC于点G,且∠CDF=∠ACB。

    1. (1) 求证:四边形ABEG是平行四边形。
    2. (2) 若AC=25,CD=24,求EG的长。
  • 23. (2021·温州模拟) 某厂家生产甲,乙两款机器人,为测试机器人性能,两机器人在同一起点出发,沿直线跑道上匀速行走,两款机器人上都有实时统计步数的显示器(机器人每走1步,显示器上步数累计加1)。已知甲,乙机器人的步距分别为0.4m,0.5m(步距是指每一步的距离), 运动过程中的时刻和步数如下:

    出发时刻

    出发时显示器中已显示的步数

    9:05时显示器中显示的步数

    9:00

    170

    a

    9:00

    220

    a

    已知当9:05时,乙比甲多走了5m。

    1. (1) 求表中a的值。
    2. (2) 9:05后,甲机器人按原速度继续沿直线行走,乙机器人再行走分钟后(1为整数)往回走(转身时间忽略不计),相遇时两机器人同时停止行走。

      ①现计划乙机器人往回走的路程不超过10m,求t的最大值

      ②为保证9:11时两机器人恰好相遇,将乙每分钟步数增加m步,求相遇时乙机器人显示器上显示的步数。

  • 24. (2021·温州模拟) 如图,已知E为正方形ABCD的边AD上一点,连结CE,点B关于CE的对称点为B',连结B'D,并延长B'D交BA的延长线于点F,延长CE交B'F于点G,连结BG。

    1. (1) 求证:∠CBG=∠CDB'
    2. (2) 若AE-2DE,BC=6,求BG的长.
    3. (3) 在(2)的条件下,H为直线BG上一点,过点H作CG的平行线I,当直线l恰好经过△ADF的顶点时,求BH的长。

微信扫码预览、分享更方便

试卷信息