当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省绍兴市2021年中考数学试卷

更新时间:2021-06-24 浏览次数:664 类型:中考真卷
一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)
二、填空题(本大题有6小题,每小题5分,共30分)
三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)
    1. (1) 计算: .
    2. (2) 解不等式: .
  • 18. (2021·绍兴) 绍兴莲花落,又称“莲花乐”,“莲花闹”,是绍兴一带的曲艺.为了解学生对该曲种的熟悉度,某校设置了:非常了解、了解、了解很少、不了解四个选项,随机抽查了部分学生进行问卷调查,要求每名学生只选其中的一项,并将抽查结果绘制成如下不完整的统计图.

    根据图中信息,解答下列问题:

    1. (1) 本次接受问卷调查的学生有多少人?并求图2中“了解”的扇形圆心角的度数.
    2. (2) 全校共有1200名学生,请你估计全校学生中“非常了解”、“了解”莲花落的学生共有多少人.
  • 19. (2022八上·新密月考) I号无人机从海拔10m处出发,以10m/min的速度匀速上升,II号无人机从海拔30m处同时出发,以a(m/min)的速度匀速上升,经过5min两架无人机位于同一海拔高度b(m).无人机海拔高度y(m)与时间x(min)的关系如图.两架无人机都上升了15min.

    1. (1) 求b的值及II号无人机海拔高度y(m)与时间x(min)的关系式.
    2. (2) 问无人机上升了多少时间,I号无人机比II号无人机高28米.
  • 20. (2024九下·丰城月考) 拓展小组研制的智能操作机器人,如图1,水平操作台为l,底座AB固定,高AB为50cm,连杆BC长度为70cm,手臂CD长度为60cm.点B,C是转动点,且AB,BC与CD始终在同一平面内,

    1. (1) 转动连杆BC,手臂CD,使 ,如图2,求手臂端点D离操作台 的高度DE的长(精确到1cm,参考数据: ).
    2. (2) 物品在操作台 上,距离底座A端110cm的点M处,转动连杆BC,手臂CD,手臂端点D能否碰到点M?请说明理由.
  • 21. (2021·绍兴) 如图,在 中, ,点D,E分別在边AB,AC上, ,连结CD,BE.

    1. (1) 若 ,求 的度数.
    2. (2) 写出 之间的关系,并说明理由.
  • 22. (2021九上·日照月考) 小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB是抛物线的一部分,抛物线的顶点C在y轴上,杯口直径 ,且点A,B关于y轴对称,杯脚高 ,杯高 ,杯底MN在x轴上.

    1. (1) 求杯体ACB所在抛物线的函数表达式(不必写出x的取值范围).
    2. (2) 为使奖杯更加美观,小敏提出了改进方案,如图2,杯体 所在抛物线形状不变,杯口直径 ,杯脚高CO不变,杯深 与杯高 之比为0.6,求 的长.
  • 23. (2021·绍兴) 问题:如图,在 中, 的平分线AE,BF分别与直线CD交于点E,F,求EF的长.

    答案: .

    1. (1) 探究:把“问题”中的条件“ ”去掉,其余条件不变.

      ①当点E与点F重合时,求AB的长;

      ②当点E与点C重合时,求EF的长.

    2. (2) 把“问题”中的条件“ ”去掉,其余条件不变,当点C,D,E,F相邻两点间的距离相等时,求 的值.
  • 24. (2021·绍兴) 如图,矩形ABCD中, ,点E是边AD的中点,点F是对角线BD上一动点, .连结EF,作点D关于直线EF的对称点P.

    1. (1) 若 ,求DF的长.
    2. (2) 若 ,求DF的长.
    3. (3) 直线PE交BD于点Q,若 是锐角三角形,求DF长的取值范围.

微信扫码预览、分享更方便

试卷信息