当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省淮安市2021届高三下学期数学5月模拟试卷

更新时间:2024-07-13 浏览次数:114 类型:高考模拟
一、单选题
二、多选题
  • 9. (2021·淮安模拟) 若随机变量 ,则下列结论正确的是(    )
    A . 该正态曲线关于直线 对称 B . ,则 C . ,则 D . 时,若 ,则
  • 10. (2021·淮安模拟) 已知曲线 ,则下列结论正确的有(    )
    A . 曲线C关于原点对称 B . 曲线C是封闭图形,且封闭图形的面积大于 C . 曲线C不是封闭图形,且图形以 轴和 轴为渐近线 D . 曲线C与圆 有4个公共点
  • 11. (2021·淮安模拟) 在三维空间中,定义向量的外积: 叫做向量 的外积,它是一个向量,满足下列两个条件:① ,且 构成右手系(即三个向量的方向依次与右手的拇指、食指、中指的指向一致,如图所示):② 的模 表示向量 的夹角)在正方体 中,有以下四个结论,正确的有(     )

    A . B . C . 方向相同 D . 与正方体表面积的数值相等
  • 12. (2021·淮安模拟) 甲、乙两人进行围棋比赛,共比赛 局,且每局甲获胜的概率和乙获胜的概率均为 .如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为 ,则(    )
    A . B . C . D . 的最大值为
三、填空题
四、解答题
  • 17. (2021·淮安模拟) 中,角 所对的边分别是 ,已知 .
    1. (1) 求角 的大小;
    2. (2) 在下列三个条件中任选一个,补充在下面问题中的横线上,并解答.

      ,点 边上的一点,且  ▲  .求线段 的长.

      的高;② 的中线;③ 的角平分线.

      注:如果选择多个方案分别解答,按第一个方案解答计分.

  • 18. (2021·淮安模拟) 已知数列 满足 ,且 .
    1. (1) 求数列 的通项公式;
    2. (2) 设 ,求 的最小值.
  • 19. (2021·淮安模拟) 机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让行人”.下表是某市一主干道路口监控设备所抓拍的5个月内驾驶员不“礼让行人”行为统计数据:

    月份

    1

    2

    3

    4

    5

    违章驾驶人次

    125

    105

    100

    90

    80

    1. (1) 由表中看出,可用线性回归模型拟合违章人次 与月份 之间的关系,求 关于 的回归方程 ,并预测该路口7月份不“礼让行人”违规驾驶人次;
    2. (2) 交警从这5个月内通过该路口的驾驶员中随机抽查90人,调查驾驶员“礼让行人”行为与驾龄的关系,得到下表:

      不礼让行人

      礼让行人

      驾龄不超过2年

      24

      16

      驾龄2年以上

      26

      24

      能否据此判断有90%的把握认为“礼让行人行为与驾龄有关?并用一句话谈谈你对结论判断的体会.

      附: .

      ,其中 .

      P(K2>k0

      0.15

      0.10

      0.05

      0.025

      0.010

      k0

      2.072

      2.706

      3.841

      5.024

      6.635

  • 20. (2021·淮安模拟) 已知四棱锥 的底面为直角梯形, 平面 ,且 ,平面 与平面 的交线为 .

    1. (1) 求证:
    2. (2) 试建立适当的空间直角坐标系,并求点 在平面 上的射影 的坐标.
  • 21. (2021·淮安模拟) 已知双曲线 的离心率为2, 为双曲线 的右焦点, 为双曲线 上的任一点,且点 到双曲线 的两条渐近线距离的乘积为 .
    1. (1) 求双曲线 的方程;
    2. (2) 设过点 且与坐标轴不垂直的直线 与双曲线 相交于点 ,线段 的垂直平分线与 轴交于点 ,求 的值.
  • 22. (2021·淮安模拟) 已知函数
    1. (1) 求 的最大值;
    2. (2) 当 时,证明:
    3. (3) 证明: .

      (参考数据:自然对数的底数

微信扫码预览、分享更方便

试卷信息