连接DA.DB,DC.设线段DC的长为x.四边形ADBC的面积为S.
①求S与x的函数关系式;
②若点M,N分别在线段CA,CB上运动(不含瑞点),经过探究发现,点D运动到每一个确定的位置. DMN的周长有最小值t,随着点D的运动,t的值会发生变化.求所有t值中的最大值,并求此时四边形ADBC的面积S.
如图1,在△ABC中,已知AB=AC=5,BC=4,在BC上找一点D,使得线段AD将△ABC分成面积相等的两部分,画出线段AD,并写出AD的长为 ▲ .
如图2,点D是△ABC边AC上一定点,在BC上找一点E,使得线段DE将△ABC分成面积相等的两部分,并说明理由.
如图3,四边形ABCD是西安市高新区新近改造过程中的一块不规则空地,为了美化环境,市规划办决定在这块地里种植两种花卉,打算过点C修一条笔直的通道,以便市民出行观赏花卉,要求通道两侧种植花卉的面积相等,经测量AB=20米,AD=100米,∠A=60°,∠ABC=150°,∠BCD=120°,若将通道记为CF,请你画出通道CF,并求出通道CF的长.