当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江西省赣州市赣县区2019-2020学年九年级上学期期末数学...

更新时间:2024-07-13 浏览次数:89 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 14. (2019九上·赣州期末) 如图,已知弓形的弦长AB=12,弓高CD=2(CD⊥AB并经过圆心O).求弓形所在⊙O的半径的长.

  • 15. (2019九上·赣州期末) 已知,在同一平面直角坐标系中,正比例函数y=﹣2x与二次函数y=﹣x2+2x+c的图象交于点A(﹣1,m).
    1. (1) 求m,c的值;
    2. (2) 求二次函数图象的对称轴和顶点坐标.
  • 16. (2019九上·赣州期末) 一个不透明的口袋里装有分别标有汉字“幸”、“福”、“赣”、“县”的四个小球,除汉字不同之外,小球没有任何区别.
    1. (1) 若从袋中任取一个球,球上的汉字刚好是“福”的概率为
    2. (2) 若同时从袋中任取两个球,记取出的两个球上的汉字恰能组成“幸福”或“赣县”为事件A,请用列表或画树状图的方法求出事件A的概率.
  • 17. (2019九上·赣州期末) 如图, 中不过圆心的一条弦,请仅用无刻度的直尺,分别按下列要求画图.

    1. (1) 在图1中画出一条弦 使
    2. (2) 在图2中, 下方 上的一点,以点 为顶点画一个直角三角形,使其第三个顶点也落在 上,并使该直角三角形的一个内角与 相等.
  • 18. (2022九上·灌阳期中) 某商场销售一批衬衫,平均每天可销售出20件,每件盈利40元,为扩大销售盈利,商场决定采取适当的降价措施,但要求每件盈利不少于20元,经调查发现.若每件衬衫每降价1元,则商场每天可多销售2件.
    1. (1) 若每件衬衫降价4元,则每天可盈利多少元?
    2. (2) 若商场平均每天盈利1200元.则每件衬衫应降价多少元?
  • 19. (2019九上·赣州期末) 在平面直角坐标系中,四边形ABCD的位置如图所示,请解答下列问题:

    1. (1) 将四边形ABCD先向左平移5个单位,再向下平移5个单位,得到四边形A1B1C1D1 , 画出平移后的四边形A1B1C1D1
    2. (2) 将四边形A1B1C1D1绕点A1逆时针旋转90°,得到四边形A1B2C2D2 , 画出旋转后的四边形A1B2C2D2 , 并写出点C2的坐标.
    3. (3) 判断四边形A1B2C2D2是否可以看成由四边形ABCD绕着某点旋转一定角度所得,如果是,请直接写出这点的坐标;如果不是,请说明理由.
  • 20. (2019九上·赣州期末) 如图,AB是⊙O的直径,延长弦BC到点D,使得CD=BC,AD交⊙O于点E,连接BE.

    1. (1) 求证:AB=AD;
    2. (2) 若AB=8,∠DBE=22.5°,求阴影部分的面积.
  • 21. (2019九上·赣州期末) 创建文明城市,让老百姓住得更舒心,某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影部分为四个全等的矩形绿化区,剩余区域为活动区,且四周的出口宽度相同(其宽度不小于14m),设绿化区较长边为xm,活动区的面积为ym2

    1. (1) 请用含x的代数式表示矩形绿化区另一边长,并求出y与x的函数关系式(不要求写出自变量x的取值范围);
    2. (2) 预计活动区造价为50元/m2 , 绿化区造价为40元/m2 , 若社区的此项建造投资费用不得超过72000元,求绿化区较长边x的取值范围.
  • 22. (2019九上·赣州期末) 如图,在Rt△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交边AB与点D,连接CD.

    1. (1) 若∠A=28°,求∠ACD的度数;
    2. (2) 若BC=1,AC=a.

      ①直接写出线段AD的长为(用含字母a的式子表示);

      ②判断线段AD的长是方程x2+2x﹣a2=0的一个根吗?为什么

  • 23. (2019九上·赣州期末) 我们知道,二次函数y=a(x﹣h)2+k(a≠0)的图象是一条抛物线,现定义一种变换,先作这条抛物线关于原点对称的抛物线y′,再将抛物线y′向上平移m(m>0)个单位,得到新的抛物线ym , 我们称ym叫做二次函数y=a(x﹣h)2+k(a≠0)的m阶变换.
    1. (1) 已知:二次函数y=2(x+2)2+1,它的顶点关于原点的对称点为,这个抛物线的2阶变换的表达式为
    2. (2) 若二次函数M的6阶变换的关系式为y6=(x﹣1)2+5.

      ①二次函数M的函数表达式为

      ②若二次函数M的顶点为点A,与x轴相交的两个交点中左侧交点为点B,动点P在抛物线y6上,作PD⊥直线AB,请求出PD最小时P点的坐标

  • 24. (2019九上·赣州期末) 如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG.

    1. (1) 试猜想线段BG和AE的数量关系,请直接写出你得到的结论;
    2. (2) 将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由;
    3. (3) 若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值.

微信扫码预览、分享更方便

试卷信息