当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

(人教版)2021-2022学年度第二学期八年级数学第19章...

更新时间:2022-05-27 浏览次数:114 类型:复习试卷
一、单选题
二、填空题
三、解答题
  • 16. 物体从高处自由下落的高度h(m)与物体下落的时间t(s)之间的函数关系式是:h= gt2(g表示重力加速度,g取9.8m/s2).某人发现头顶上空490m处有一炸弹自由下落,其地面杀伤半径为50m,此人发现后,立即以6m/s的速度逃离,那么此人有无危险?
  • 17. (2019八上·银川期中) 请在图中画出直线 的图象,并且直线与 轴、 轴交点分别为 ,若直线 上的点 在第一象限,且 ,求点 的坐标.

  • 18. 已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.

    (1)求正比例函数的解析式;

    (2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.

  • 19. (2023八上·金安月考) 已知 成正比例,且当 时,
    1. (1) 求 之间的函数表达式;
    2. (2) 当 时,求 的值.
  • 20. (2021九上·太原月考) 在平面直角坐标系中,直线 分别与x轴、y轴交于点A、点B,且与直线 于点C.

    如图 ,求出B、C两点的坐标;

    若D是线段OC上的点,且 的面积为4,求直线BD的函数解析式.

    如图 ,在 的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.

  • 21. (2021八下·南开期末) 如图,直线 分别与x轴,y轴交于AB两点,AB的坐标分别为 ,过点B的直线 x轴于点C , 点 是直线l上的一点,连接

    (Ⅰ)求 的解析式;

    (Ⅱ)求CD的坐标;

    (Ⅲ)求 的面积.

  • 22. (2020八下·赣州期末) 如图,已知一次函数 的图象与 轴, 轴分别交于A,B两点,点 在该函数的图象上,连接OC.求点A,B的坐标和 的面积.

  • 23. (2023九下·建始模拟) 某校积极响应国家号召,为落实垃圾“分类回收,科学处理”的政策,准备购买 L和 L两种型号的垃圾箱若干套.若购买8套 L垃圾箱和5套 L垃圾箱,共需7200元;若购买4套 L垃圾箱和6套 L垃圾箱,共需6400元.
    1. (1) 每套 L垃圾箱和每套 L垃圾箱各多少元?
    2. (2) 学校决定购买 L垃圾箱和 L垃圾箱共20套,且 L垃圾箱的数量不少于 L垃圾箱数量的 ,求购买这20套垃圾箱的最少费用.

微信扫码预览、分享更方便

试卷信息