当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

吉林省名校调研系列卷2022年九年级第三次模拟测试数学试题

更新时间:2022-06-28 浏览次数:115 类型:中考模拟
一、选择题(每小题2分,共12分)
二、填空题(每小题3分,共24分)
三、解答题(每小题5分,共20分)
四、解答题(每小题7分,共28分)
  • 19. (2022·吉林模拟) 图①.图②均是5×1的正方形网格,每个小正方形的顶点称为格点点A.B均在格点上在图①.图②中,只用无刻度直尺,在给定的网格中按要求画图。所画图形的顶点均在格点上,不要求写出画法.

    1. (1) 在图①中画一个△ABO,使∠OAB=∠OBA=45°;
    2. (2) 在图②中画一个△ABQ,使∠QAB+∠QBA=45°.
  • 20. (2022·吉林模拟) 如图,一灯柱AB被-钢缆CD固定,CD与地面成45°夹角,且BD=5米.在C点上方E点处加固一条钢缆ED,ED与地面成62°夹角,求点C与点E之间的距离(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88).

  • 21. (2022·吉林模拟) 如图,ABCD放置在平面直角坐标系申,已知点A(-2,0)、B(-6,0)、D(0,3).点C在反比例函数y=的图象上。

    1. (1) 直接写出反比例函数的解析式;
    2. (2) 将ABCD向上平移得到EFGH,使点F在反比例函数y=的图象上.GH与反比例函数的图象交于点M,连接AE,求AE的长及点M的坐标.
  • 22. (2022·吉林模拟) 某校要加强中小学生作业、睡眠、手机、读物、体质管理.数学社团成员采用随机抽样的方法,抽取了七年级若干名学生,对他们一周内平均每天的睡眠时间t(单位:h)进行了调查,将数据整理后得到下列不完整的统计表和扇形统计图.请根据图表信息解答下列问题.

    1. (1) 本次被抽取的七年级学生共有名,统计表中,m=
    2. (2) 扇形统计图中,C组所在扇形的圆心角的度数是度;
    3. (3) 请估计该校800名七年级学生中睡眠不足7小时的人数.

      组别

      睡眠时间分组

      频数

      A

      t<6

      4

      B

      6≤t<7

      8

      C

      7≤t<8

      10

      D

      8≤t<9

      21

      E

      t≥9

      m

五、解答题(每小题8分,共16分)
  • 23. (2022·吉林模拟) 工厂中甲.乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2.5倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如图所示.

    1. (1) 甲组的工作效率是件/时;
    2. (2) 求出图中a的值及乙组更换设备后加工零件的数量y与时间x之间的函数关系式;
    3. (3) 当x为何值时,两组一共生产570件零件.
  • 24. (2022·吉林模拟) [探索发现]

    如图①,将△ABC沿中位线Eh折叠,使点A的对称点D落在BC边上,再将△BED和△DHC分别沿EF、HG折叠,使点B、C均落在点D处,折痕形成一个四边形EFGH.

    1. (1) 求证:四边形EFGH是矩形;
    2. (2) 连接AD,当AD=BC时,直接写出线段EF、BF、CG的数量关系,并说明理由;
    3. (3) 如图②,在四边形ABCD中,AD∥BC,∠B=90°,AB=8,DC=10,AD<BC,点E为AB的中点,把四边形ABCD折叠成如图②所示的正方形EFGH,顶点C、D落在点M处,顶点A、B落在点N处,直接写出BC的长.
六、解答题(每小题10分,共20分)
  • 25. (2022·吉林模拟) 如图,抛物线y=ax2+bx-4经过A(-2,0)、B(4,0)两点,与y轴交于点C.点P为线段AB上的一动点(不与点B重合),连接PC、BC,将△BPC沿直线BC翻折得到△BP'C,P'C交抛物线于另一点Q,连接QB.

    1. (1) 求抛物线的解析式;
    2. (2) 求四边形QCOB面积的最大值:
    3. (3) 当CQ:QP'=1:2时,求点Q的坐标.
  • 26. (2022·吉林模拟) 如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,点D是边AB的中点.动点P从点B出发,沿BA以每秒4个单位长度的速度向终点A运动,当点p与点D不重合时,以PD为边构造Rt△PDQ,使∠PDQ=∠A,∠DPQ=90°,且点Q与点C在直线AB同侧.设点P的运动时间为t秒(t>0),△PDQ与△ABC重叠部分图形的面积为S.

    1. (1) 用含t的代数式表示线段PD的长:
    2. (2) 当点Q落在边BC上时,求t的值;
    3. (3) 当△PDQ与△ABC重查部分图形为四边形时,求S与t的函数关系式;
    4. (4) 当点Q落在△ABC内部或边上时,直接写出点Q与△ABC的顶点的连线平分△ABC面积时t的值.

微信扫码预览、分享更方便

试卷信息