当前位置: 初中数学 /北师大版(2024) /九年级下册 /第二章 二次函数 /本章复习与测试
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2023年春季北师版数学九年级下册第二章 《二次函数》单元检...

更新时间:2022-11-17 浏览次数:118 类型:单元试卷
一、单选题(每题3分,共30分)
二、填空题(每题3分,共18分)
三、解答题(共8题,共72分)
  • 17. (2022·鞍山) 某超市购进一批水果,成本为8元/ , 根据市场调研发现,这种水果在未来10天的售价(元/)与时间第天之间满足函数关系式为整数),又通过分析销售情况,发现每天销售量与时间第天之间满足一次函数关系,下表是其中的三组对应值.

    时间第

    2

    5

    9

    销售量

    33

    30

    26

    1. (1) 求的函数解析式;
    2. (2) 在这10天中,哪一天销售这种水果的利润最大,最大销售利润为多少元?
  • 18. (2022九下·大埔期中) 如图,已知二次函数的图象与x轴交于点A,点B,与y轴交于点C,其顶点为D,直线DC的函数解析式为 . 已知

    1. (1) 求二次函数的函数解析式和直线DC的函数解析式;
    2. (2) 连接BD,求的面积.
  • 19. (2023九上·青秀期末) 北京冬奥会自由式滑雪空中技巧比赛中,某运动员比赛过程的空中剪影近似看作一条抛物线,跳台高度为4米,以起跳点正下方跳台底端为原点,水平方向为横轴,竖直方向为纵轴,建立如图所示平面直角坐标系.已知抛物线最高点的坐标为 , 着陆坡顶端与落地点的距离为2.5米,若斜坡的坡度(即).求:

    1. (1) 点的坐标;
    2. (2) 该抛物线的函数表达式;
    3. (3) 起跳点与着陆坡顶端之间的水平距离的长.(精确到0.1米)(参考数据:
  • 20. (2022·黄石) 某校为配合疫情防控需要,每星期组织学生进行核酸抽样检测;防疫部门为了解学生错峰进入操场进行核酸检测情况,调查了某天上午学生进入操场的累计人数y(单位:人)与时间x(单位:分钟)的变化情况,发现其变化规律符合函数关系式:数据如下表.

    时间x(分钟)

    0

    1

    2

    3

    8

    累计人数y(人)

    0

    150

    280

    390

    640

    640

    1. (1) 求a,b,c的值;
    2. (2) 如果学生一进入操场就开始排队进行核酸检测,检测点有4个,每个检测点每分钟检测5人,求排队人数的最大值(排队人数-累计人数-已检测人数);
    3. (3) 在(2)的条件下,全部学生都完成核酸检测需要多少时间?如果要在不超过20分钟让全部学生完成核酸检测,从一开始就应该至少增加几个检测点?
  • 21. (2024九下·澄海月考) 如图,抛物线经过点和点 , 与轴的另一个交点为 , 连接

    1. (1) 求抛物线的解析式及点的坐标;
    2. (2) 如图1,若点是线段的中点,连接 , 在轴上是否存在点 , 使得是以为斜边的直角三角形?若存在,请求出点的坐标;若不存在,请说明理由;
    3. (3) 如图2,点是第一象限内抛物线上的动点,过点轴,分别交轴于点 , 当中有某个角的度数等于度数的2倍时,请求出满足条件的点的横坐标.
  • 22. (2022·绵阳) 如图,抛物线y=ax2+bx+c交x轴于A(-1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.

    1. (1) 求抛物线的解析式;
    2. (2) 在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°.若存在,求出点P的坐标,若不存在,请说明理由;
    3. (3) 过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与ΔADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.
  • 23. (2022·郴州) 已知抛物线 与x轴相交于点 ,与y轴相交于点C.

    1. (1) 求抛物线的表达式;
    2. (2) 如图1,将直线BC间上平移,得到过原点O的直线MN.点D是直线MN上任意一点.

      ①当点D在抛物线的对称轴l上时,连接CD,关x轴相交于点E,求线段OE的长;

      ②如图2,在抛物线的对称轴l上是否存在点F,使得以B,C,D,F为顶点的四边形是平行四边形?若存在,求出点F与点D的坐标;若不存在,请说明理由.

  • 24. (2023·抚顺模拟) 如图,已知抛物线: 与x轴交于点A, (A在B的左侧),与y轴交于点C,对称轴是直线 ,P是第一象限内抛物线上的任一点.

    1. (1) 求抛物线的解析式;
    2. (2) 若点D为线段 的中点,则 能否是等边三角形?请说明理由;
    3. (3) 过点P作x轴的垂线与线段 交于点M,垂足为点H,若以P,M,C为顶点的三角形与 相似,求点P的坐标.

微信扫码预览、分享更方便

试卷信息