当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省苏州市苏州工业园区金鸡湖学校2022-2023学年九年...

更新时间:2023-02-27 浏览次数:70 类型:月考试卷
一、单选题
二、填空题
三、解答题
    1. (1) .
    2. (2) 已知α为锐角,  , 计算的值.
  • 20. (2022九上·苏州月考) 如图,是圆O的直径,点C、D为圆O上的点,满足:点C是弧的中点,于点E.已知.

    1. (1) 求圆O的半径;
    2. (2) 过点C作的平行线交弦于点F,求线段的长.
  • 21. (2022九上·苏州月考) 如图所示,建筑物 座落在一斜坡的坡顶的平地上,当太阳光线与水平线夹角成60°时,测得建筑物 在坡顶平地上的一部分影子 米,在斜坡 上的另一部分影子 米,且斜坡 的坡度为 (即 求建筑物 的高度.(结果保留根号)

  • 22. 如图,在四边形中,.

    1. (1) 求的长;
    2. (2) 求四边形的面积.
  • 23. (2022九上·苏州月考) 如图,在平面直角坐标系中,的两条直角边分别落在x轴、y轴上,且 , 将绕原点O顺时针旋转得到 , 将沿y轴翻折得到交于点F.

    1. (1) 若抛物线过点A,B,C,求此抛物线的函数表达式;
    2. (2) 点M是第三象限内抛物线上的一动点,点M在何处时可使的面积最大?最大面积是多少?并求出此时点M的坐标.
  • 24. (2022九上·苏州月考) 重庆市红色旅游景点众多,例如歌乐山烈士陵园、红岩革命纪念馆、刘伯承同志纪念馆、聂荣臻元帅陈列馆等等,某学校为了解初三学生对重庆历史文化的了解程度,随机抽取了男、女各50名学生进行问卷测试,问卷共30道选择题,现将得分情况统计,并绘制了如图不完整的统计图(数据分组为A组:x≤15,B组: , C组: , D组: , x表示问卷测试的分数,大于20分为优秀),其中男生得分处于C组的得分情况分别为:21,22,22,22,22,22,23,23,24,24,24,25,25,25.

    男生、女生得分的平均数、中位数、众数、优秀人数百分比如表所示:

    组别

    平均数

    中位数

    众数

    优秀人数所占百分比

    20

    m

    22

    72%

    20

    23

    20

    n

    1. (1) 填空: =      ▲      =      ▲       , 并补全条形统计图;
    2. (2) 根据以上数据,你认为男生和女生对重庆历史文化了解哪个更好?请说明理由(一条即可).
    3. (3) 已知该校初三年级共有男生400人,女生460人,请估计该校初三年级参加问卷测试成绩处于组的总人数
  • 25. (2022九上·苏州月考) 如图(1),的直径,点D、F是上的点,连接并延长交于A点,且.

    1. (1) 求证:
    2. (2) 求:
    3. (3) 如图(2),若点E是弧的中点,连接.求:.
  • 26. (2022九上·苏州月考) 我们规定,对于已知线段AB,若存在动点C(点C不与点A,B重合)始终满足∠ACB的大小为定值,则称△ABC是“立信三角形”,其中AB的长称为它的“立信长”,∠ACB称为它的“立信角”.

    1. (1) 如图(1),已知立信△ABC中“立信长” , “立信角” , 请直接写出立信△ABC面积的最大值;
    2. (2) 如图(2),在△ABD中, , C是立信△ABC所在平面上的一个动点,且立信角 , 求立信△ABC面积的最大值;
    3. (3) 如图(3),已知立信长(a是常数且),点C是平面内一动点且满足立信角 , 若∠ABC,∠BAC的平分线交于点D,问:点D的运动轨迹长度是否为定值?如果是,请求出它的轨迹长度;如果不是,请说明理由.

微信扫码预览、分享更方便

试卷信息