当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

吉林省长春市2022年5月中考模拟——数学试卷

更新时间:2023-04-28 浏览次数:84 类型:中考模拟
一、选择题(本大题共8小题,每小题3分,共24分)
二、填空题(本大题共6小题,每小题3分,共18分)
三、解答题(本大题共10小题,共78分)
  • 15. (2022·长春模拟) 先化简,再求值:m(m-4)+(m+2)2-1,其中m=
  • 16. (2022·长春模拟) 如图,在4X4的正方形网格中,每个小正方形的边长均为1个单位长度,小正方形的顶点称为格点,点A、O均在格点上,小乌龟初始位于点O,它的每一步都会在以下三种情形中随机地选择一种:①向左移动1个单位长度(记为左);②向上移动1个单位长度(记为上);③向右移动1个单位长度(记为右) .用画树状图(或列表)的方法,求小乌龟两步之后到达点A的概率.

  • 17. (2022·长春模拟) 长春冰雪新天地是美丽春城的一道亮丽的风景线,它的设计和造型每年都有变化.在2021年长春冰雪新天地的建造过程中,某工程公司承担了为某项建设取600吨冰块的任务,由于任务紧急,实际取冰时的工作效率比原计划提高了20%,结果提前1天完成任务.该公司原计划每天取冰块多少吨?
  • 18. (2022·长春模拟) 如图,在△ABC中,∠ACB=90°,AD平分∠BAC,交边BC于点D,O为边AB上一点,以点O为圆心,OA长为半径的圆恰好经过点D.

    1. (1) 求证: BC是⊙O的切线.
    2. (2) 若⊙O的半径为2,AC=3,则AB的长为
  • 19. (2022·长春模拟) 初三学生小明就如何分配周末自主复习语文、数学、英语的时间问题,去请教了班主任.班主任结合小明本学期三次模拟考试的成绩,建议他根据“相对失分比”的情况,划分周末复习时间.

    具体操作分为四步:

    第一步:计算小明这三次模拟考试中语文、数学、英语单科成绩与当次考试该科年级最高分的差值作为“相对失分”,并记录如下:

    小明这三次模拟考试中语文、数学、英语每科成绩“相对失分”表.

    学科

    相对失分

    模拟次数

    语文

    数学

    英语

    第一次

    15

    13

    5

    第二次

    8

    14

    7

    和三次

    13

    9

    6

    第二步:计算表中每科成绩的“相对失分”的平均数,并分别记作:语文,数学,英语;

    第三步:计算表中每科成绩的“相对失分比”;

    某一科成绩的“相对失分比”= ×100%

    例:语文成绩的“相对失分比”=×100%.

    第四步:根据“相对失分比”划分复习时间,即某科的“相对失分比”就是该科周末复习时间的占比.

    根据以上操作步骤,解答下列问题:

    1. (1) 小明的语文三次成绩“相对失分”的平均数语文=分.
    2. (2) 小明想通过扇形统计图直观地显示语文、数学、英语每科成绩“相对失分比”的情况,请分别计算小明这三科每科成绩的“相对失分比”,并绘制扇形统计图.

    3. (3) 假设小明周末复习语文、数学、英语三科的时间共有200分钟,那么按照上述方法,小明应分配给语文学科的复习时间约为分钟.
  • 20. (2022·长春模拟) 图①、图②、图③分别是6×6的正方形网格,网格中每个小正方形的边长均为1,小正方形的顶点称为格点,点A、B、C、D、E、P、Q、M、N均在格点上,仅用无刻度的直尺在下列网格中按要求作图,保留作图痕迹.

    1. (1) 在图①中,画线段AB的中点F.
    2. (2) 在图②中,画△CDE的中位线GH,点G、H分别在线段CD、CE上,并直接写出△CGH与四边形DEHG的面积比.
    3. (3) 在图③中,画△PQR,点R在格点上,且△PQR被线段MN分成的两部分图形的面积比为1:3.
  • 21. (2022·长春模拟) 已知A、B两地之间有一条笔直公路,甲车从A地出发匀速去往B地,到达B地后立即以原速原路返回A地,乙车从B地出发匀速去往A地,两车同时出发,乙车比甲车晚20分钟到达A地、甲车距A地的路程y(千米)与甲车行驶的时间x(分钟)之间的函数关系如图所示.

    1. (1) 在图中画出乙车距A地的路程y(千米)与x(分钟)之间的函数图象,并求出它所对应的函数关系式.(写出自变量x的取值范围)
    2. (2) 甲、乙两车在行驶过程中相遇了次.
    3. (3) 求甲车到B地时,乙车距A地的路程.
  • 22. (2022·长春模拟) [问题呈现]小强在一次学习过程中遇到了下面的问题:

    如图①,在△ABC与ODEF中,AB=DE,∠A=∠D,AC+BC=DF.

    求证:∠ACB=2∠F.

    1. (1) [方法探究]以下是小强的方法:

      证明:如图②,延长AC到点G,使CG=CB,连结BG.

      ∵CG=CB,

      ∴∠CBG=∠G .

      ∴∠ACB=∠CBG+∠G=2∠G.

      接下来只需证明∠G=∠F,进而就能得出∠ACB=2∠F .

      请你补全余下的证明过程.

    2. (2) [方法总结]从上面的方法可以看出,通过“化折为直”,不仅可以构造等腰三角形,还可以得到角的倍、半关系,可谓一举两得.

      [方法应用]如图③,在△ABC中,∠ACB=90°,∠A=35°,延长BC到点D,使DC=BC,点E在边AC上,连结DE.当DE+EC=AC时,∠DEC的大小为°

    3. (3) [拓展延伸]如图④,在△ABC中,∠C=90°,∠B=50°.若AB+BC=10,求边AC的长.(精确到 0.1)

      [参考数据:sin25°≈0.423,cos25°≈ 0.906,tan25°≈0.466 ]

  • 23. (2022·长春模拟) 如图,ABCD的面积为12,AB=6,AD=3.点M在边AB上(点M与点A不重合),连结DM,作点A关于直线DM的对称点A',连结AM、AD.

    1. (1) 点D到直线AB的距离是
    2. (2) 设点A'到直线BC的距离为d,求d的最小值.
    3. (3) 当点A'落在 ABCD的边上时,求AM的长.
    4. (4) 当直线A'M与 ABCD的一边垂直时,直接写出AM的长.
  • 24. (2022·长春模拟) 在平面直角坐标系中,抛物线y=x2+bx+c (b、c为常数)的对称轴为直线x=1,与y轴交点的坐标为(0,-2),点A、点B均在这个抛物线上(点A在点B的左侧),点A的横坐标为m,点B的横坐标为1-2m.
    1. (1) 求此抛物线对应的函数表达式.
    2. (2) 当点A、点B关于此抛物线的对称轴对称时,连结AB,求线段AB的长.
    3. (3) 将此抛物线上A、B两点之间的部分(包括A、B两点)记为图象G.

      ①当图象G对应的函数值y随x的增大而先减小后增大时,设图象G最高点的纵坐标与最低点的纵坐标的差为h,求h与m之间的函数关系式,并写出h的取值范围.

      ②设点E的坐标为(-2-2m,1),点F的坐标为(-2-2m,-3-2m),连结EF,当线段EF和图象G有公共点时,直接写出m的取值范围.

微信扫码预览、分享更方便

试卷信息