当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省温州市2022-2023学年年九年级上册数学学业水平开...

更新时间:2023-10-31 浏览次数:55 类型:开学考试
一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,选择正确才给分)
二、填空题(本题共8小题,共40分,标明“㉿”符号题目在学校要求下选择是否与附加题替换,替换后需写附加题,不替换需写原题)
三、解答题(本题共6小题,共70分,无特定要求的解答时需写出必要的文字说明,演算步骤或证明过程)
  • 19. (2022九上·温州开学考) 计算:先化简,再求值: , 其中x的值是方程的解.
  • 20. (2022九上·温州开学考) 如图,在每个小正方形的边长均为1的方格纸中,有线段和线段 , 点均在小正方形的顶点上.

    1. (1) 在方格纸中画出以为对角线的正方形 , 点在小正方形的顶点上;
    2. (2) 在方格纸中画出以为斜边的等腰直角三角形 , 点在小正方形的顶点上,连接 , 请直接写出长=    ▲    
  • 21. (2022九上·温州开学考) 6月13日,某港口的潮水高度y)和时间x(h)的部分数据及函数图象如下:(数据来自某海洋研究所)

    1. (1) 数学活动:

      ①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.

      ②观察函数图象,当时,y的值为多少?当y的值最大时,x的值为多少?    ▲        ▲    .

    2. (2) 数学思考:

      结合函数图象,写出该函数的两条性质或结论

                                                                                                                                                                                                      

      x(h)

      11

      12

      13

      14

      15

      16

      17

      18

      y(cm)

      189

      137

      103

      80

      101

      133

      202

      260

    3. (3) 数学应用:

      当潮水高度超过260 , 货轮能安全进出港口.问当天货轮进出港口最佳时间段?

  • 22. (2022九上·温州开学考) 某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:

    中小学生每周参加家庭劳动时间x(h)分为5组:第一组(0≤x<0.5),第二组(0.5≤x<1),第三组(1≤x<1.5),第四组(1.5≤x<2),第五组(x≥2).根据以上信息,解答下列问题:

    1. (1) 本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?
    2. (2) 在本次被调查的中小学生中,选择“不喜欢”的人数为多少?
    3. (3) 该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h,请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.

      .

  • 23. (2022九上·温州开学考) 某商品的成本(单位:百元)由包装费和生产费两部分组成.其中当原料数量(单位:千克)低于4千克时,包装费(单位:百元)与原料数量之间的关系式为;当原料数量不低于4千克时,包装费全免.生产费(单位:百元)与原料数量之间的关系式为:
    1. (1) 当原料数量时,该商品的成本为:(百元);当原料数量时,该商品的成本为:(百元);(直接用含的式子表示)
    2. (2) 若 , 求原料数量为多少千克时,该商品的成本最少?最少是多少百元?
    3. (3) 当原料数量低于4千克时,有且仅有唯一正整数使得该商品的成本不高于2百元,直接写出的取值范围.
  • 24. (2022九上·温州开学考) 如图1,矩形中, , 点P在边上,且不与点BC重合,直线的延长线交于点E

    1. (1) 当点P的中点时,求证:
    2. (2) 将沿直线折叠得到 , 点落在矩形的内部,延长交直线于点F

      ①证明 , 并求出在(1)条件下的值;

      ②连接 , 求周长的最小值;

    3. (3) 如图2,于点H , 点G的中点。当时,请判断的数量关系为    ▲     , 并说明理由.
四、附加题(本题共2小题,共10分)
五、思维扩展(本题共9小题,共50分,分为选择题,填空题与解答题)
  • 27. (2022九上·温州开学考) 对于一元二次方程 , 有下列说法:

    ①若 , 则方程必有一个根为1;

    ②若方程有两个不相等的实根,则方程必有两个不相等的实根;

    ③若是方程的一个根,则一定有成立;

    ④若是一元二次方程的根,则

    其中正确的有( )

    A . 1个 B . 2个 C . 3个 D . 4个
  • 28. (2022九上·温州开学考) 清代著名数学家梅文鼎在《勾股举隅》一书中,用四个全等的直角三角形拼出正方形的方法证明了勾股定理(如图).设四个全等直角三角形的较短直角边为 , 较长直角边为 , 五边形的面积为的面积为 , 若 , 则的值为( )

    A . 5 B . 6 C . 7 D . 8
  • 29. (2022九上·温州开学考) 如图,▱ABCD中,AB=3,AD=5,ACABEF为线段BD上两动点(不与端点重合)且EFBD , 连接AECF , 当点EF运动时,对AE+CF的描述正确的是( )

    A . 等于定值5- B . 有最大值 C . 有最小值 D . 有最小值
  • 30. (2022九上·温州开学考) 如图1,在矩形ABCD中,ABBCACBD交于点O . 点E为线段AC上的一个动点,连接BEDE , 过点EEFBD于点F . 设图1中一线段的长为xDEy , 表示yx的函数关系的图象如图2所示,则这条线段可能是图1中的( )

    A . 线段FE B . 线段CE C . 线段BE D . 线段AE
  • 31. (2022九上·温州开学考) 如图,在平面直角坐标系中,矩形的对角线的中点与坐标原点重合,点Ex轴上一点,连接.若平分 , 反比例函数的图象经过上的两点AF , 且的面积为9,则k的值为( )

    A . 3 B . 6 C . 9 D . 12
  • 32. (2022九上·温州开学考) 如图,△ABC是等腰三角形,ABAC , ∠B=30°,△ADE是直角三角形,∠ADE=90°,∠E=30°,ADAB . 将△ADE绕点A旋转,ADAE分别交BC于点FG , 当∠AGB=75°时,

  • 33. (2022九上·温州开学考) 对于任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72[]=8[]=2[]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是
  • 34. (2022九上·温州开学考) 中,D的中点,EF分别为上任意一点,连接 , 将线段绕点E顺时针旋转90°得到线段 , 连接

    1. (1) 如图1,点E与点C重合,且的延长线过点B , 若点P的中点,连接 , 求的长;
    2. (2) 如图2,的延长线交于点M , 点N上, , 求证:
    3. (3) 如图3,F为线段上一动点,E的中点,连接H为直线上一动点,连接 , 将沿翻折至所在平面内,得到 , 连接 , 直接写出线段的长度的最小值.
  • 35. (2022九上·温州开学考) 如图1,抛物线经过点 , 并交x轴于另一点B , 点在第一象限的抛物线上,交直线于点D

    1. (1) 求该抛物线的函数表达式;
    2. (2) 当点P的坐标为时,求四边形的面积;
    3. (3) 点Q在抛物线上,当的值最大且是直角三角形时,求点Q的横坐标;
    4. (4) 如图2,作x轴于点 , 点H在射线上,且 , 过的中点K轴,交抛物线于点I , 连接 , 以为边作出如图所示正方形 , 当顶点M恰好落在y轴上时,请直接写出点G的坐标

微信扫码预览、分享更方便

试卷信息