当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

贵州省遵义五十七中2023年中考四模数学考试试卷

更新时间:2024-07-31 浏览次数:31 类型:中考模拟
一、选择题(本大题共12小题,共36.0分。在每小题列出的选项中,选出符合题目的一项)
二、填空题(本大题共4小题,共16.0分)
三、计算题
    1. (1) 有三个不等式 , 请在其中任选两个不等式,组成一个不等式组,并求出它的解集;
    2. (2) 小红在计算时,解答过程如下:                                  

               第一步
      第二步
      第三步

      小红的解答从第 步开始出错,请写出正确的解答过程.

四、解答题(本大题共8小题,共88.0分。解答应写出文字说明,证明过程或演算步骤)
  • 18. (2023·遵义模拟) 如图所示,甲、乙两个带指针的转盘分别被分成三个面积相等的扇形两个转盘除表面数字不同外,其它完全相同 , 转盘甲上的数字分别是 , 转盘乙上的数字分别是规定:指针恰好停留在分界线上,则重新转一次
    1. (1) 转动转盘,转盘甲指针指向正数的概率是;转盘乙指针指向正数的概率是
    2. (2) 若同时转动两个转盘,转盘甲指针所指的数字记为 , 转盘乙指针所指的数字记为 , 请用列表法或树状图法求满足的概率.
  • 19. (2023·遵义模拟) 一次函数的图象与反比例函数的图象相交于两点.

    1. (1) 求这个反比例函数的表达式;
    2. (2) 根据图象写出使一次函数值小于反比例函数值的的取值范围.
  • 20. (2024八下·贵阳月考) 如图,在矩形 中,点 上, ,且 ,垂足为 .

    1. (1) 求证:
    2. (2) 若 ,求四边形 的面积.
  • 21. (2023·遵义模拟) 如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成如图2,是灯杆,是灯管支架,灯管支架与灯杆间的夹角.综合实践小组的同学想知道灯管支架的长度,他们在地面的点E处测得灯管支架底部D的仰角为60°,在点F处测得灯管支架顶部C的仰角为30°,测得m,m(A,E,F在同一条直线上).根据以上数据,解答下列问题:

    1. (1) 求灯管支架底部距地面高度的长(结果保留根号);
    2. (2) 求灯管支架的长度(结果精确到0.1m,参考数据:).
  • 22. (2023·遵义模拟) 如图,AB是⊙O的直径,弦AC与BD交于点E,且AC=BD,连接AD,BC.

    1. (1) 求证:△ADB≌△BCA;
    2. (2) 若OD⊥AC,AB=4,求弦AC的长;
    3. (3) 在(2)的条件下,延长AB至点P,使BP=2,连接PC.求证:PC是⊙O的切线.
  • 23. (2023·遵义模拟) 遵义市开展信息技术与教学深度融合的精准化教学某实验学校计划购买A,B两种型号教学设备,已知A型设备价格比B型设备价格每台高20%,用30000元购买A型设备的数量比用15000元购买B型设备的数量多4台.
    1. (1) 求A,B型设备单价分别是多少元?
    2. (2) 该校计划购买两种设备共50台,要求A型设备数量不少于B型设备数量的.设购买a台A型设备,购买总费用为w元,求w与a的函数关系式,并求出最少购买费用.
  • 24. (2023·遵义模拟) 如图,抛物线 与抛物线 开口大小相同、方向相反,它们相交于 两点,且分别与 轴的正半轴交于点 ,点

    1. (1) 求抛物线 的解析式;
    2. (2) 在抛物线 的对称轴上是否存在点 ,使 的值最小?若存在,求出点 的坐标,若不存在,说明理由;
    3. (3) 是直线 上方抛物线 上的一个动点,连接 运动到什么位置时, 面积最大?并求出最大面积.
  • 25. (2023·遵义模拟) 如图1,在矩形中,边上的一点,连接 , 将矩形沿折叠,顶点恰好落在边上的点处,延长的延长线于点

    1. (1) 求线段的长;
    2. (2) 求证四边形为菱形;
    3. (3) 如图2,分别是线段上的动点(与端点不重合),且 , 设 , 是否存在这样的点 , 使是直角三角形?若存在,请求出的值;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息