当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

【北师大版】2023-2024学年数学七年级(上)期末仿真模...

更新时间:2023-12-21 浏览次数:66 类型:期末考试
一、选择题(每题3分,共30分)
二、填空题(每题3分,共15分)
三、解答题(共7题,共55分)
  • 19. (2023七上·顺德月考) 观察下列两个等式: , 给出定义如下:

    我们称使等式成立的一对有理数为“共生有理数对”,记为 , 如数对 , 都是“共生有理数对”.

    1. (1) 判断数对是否为“共生有理数对”,并说明理由;
    2. (2) 若是“共生有理数对”,且 , 求的值;
    3. (3) 若是“共生有理数对”,则是“共生有理数对”吗?请说明理由.
  • 20. (2021七上·黄埔期末) 某商店有两种书包,每个小书包比大书包的进价少10元,而它们的售后利润额相同.其中,每个小书包的盈利率为 , 每个大书包的盈利率为 , 试求两种书包的进价.
  • 21. (2023七上·中山期中) 如图,已知数轴上两点A、B.点C为数轴上的动点,其表示的数为x.

    1. (1) 若点C到点A、B的距离相等,则点C表示的数x的值为
    2. (2) 式子|x-3|+|x+1|的最小值是
    3. (3) 点D也是数轴上的一个动点,已知点C的运动速度为每秒2个单位长度,动点C、D同时分别从点A、B出发开始运动.

      ①若点C、D相向而行,在表示数的点相遇,求点D的运动速度;

      ②若点D的运动速度是每秒4个单位长度,C、D两点同时向左匀速运动,则当C、D两点之间的距离为2时,两点运动了多长时间?

    4. (4) 若动点C从点A出发,第一次向左运动1个单位长度,第二次向右运动2个单位长度,第三次向左运动3个单位长度,…,按此规律不断在数轴上做往复运动,当点C运动了n次时,直接用含n的代数式表示出点C所表示的有理数.
  • 22. (2022七上·江城期末) 如图1,点O为直线上一点,过点O作射线 , 使 , 将一直角三角板的直角顶点放在点O处,一边在射线上,另一边在直线的下方.

    1. (1) 将图1中的三角板绕点O逆时针旋转至图2,使点N在的反向延长线上,请直接写出图中的度数;
    2. (2) 将图1中的三角板绕点O顺时针旋转至图3,使一边的内部,且恰好平分 , 求的度数;
    3. (3) 将图1中的三角尺绕点O顺时针旋转至图4,使内部,请探究之间的数量关系,并说明理由.

微信扫码预览、分享更方便

试卷信息