当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

备战2024年中考数学细点逐一突破真题训练第5章不等式(组)...

更新时间:2024-03-04 浏览次数:83 类型:一轮复习
一、不等式性质
二、不等式(组)及其解集
三、不等式(组)的特殊解
四、函数与不等式结合
  • 19. (2024八上·杭州期末) 如图,一次函数y1kx+by2mx+n的图象相交于点(1,3),则方程组的解为 , 关于x的不等式kx+bmx+n的解为

  • 20. (2023九上·中江期中)  如图,已知二次函数y1=的图象与正比例函数y2kxk≠0)的图象相交于点A(3,4),与x轴交于点B(2,0),若0<y1y2 , 则x的取值范围是(  )

    A . B . 2<x<3 C . D . 0<x<3
  • 21. (2024八上·杭州期末) 已知一次函数的图象与的图象交于点 . 则对于不等式 , 下列说法正确的是( )
    A . 时, B . 时, C . 时, D . 时,
  • 22. (2023·静安模拟) 已知反比例函数的图像经过点

    1. (1) 求的值;
    2. (2) 完成下面的解答过程.

      解不等式组

      解:解不等式①,得

      在方格中画出反比例函数的大致图像,根据图像写出不等式②的解集是

      把不等式①和②的解集在数轴上表示出来;

      从图中可以找出这两个不等式解集的公共部分,得到原不等式组的解集是

  • 23. (2024九上·扶余期末) 自主学习,请阅读下列解题过程.

    解一元二次不等式:>0.

    解:设=0,解得:=0,=5,则抛物线y=与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=的大致图象(如图所示),由图象可知:当x<0,或x>5时函数图象位于x轴上方,此时y>0,即>0,所以,一元二次不等式>0的解集为:x<0或x>5.

    通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:

    1. (1) 上述解题过程中,渗透了下列数学思想中的.(只填序号)

      ①转化思想     ②分类讨论思想    ③数形结合思想

    2. (2) 一元二次不等式<0的解集为
    3. (3) 用类似的方法解一元二次不等式:>0.
五、一次不等式的实际应用
  • 24. (2024八上·讷河期末) 综合与实践问题情境:“文房四宝”是中国独有的书法绘画工具,即笔、墨、纸、砚,文房四宝之名,起源于南北朝时期.某中学为了落实双减政策,丰富学生的课后服务活动,开设了书法社团,计划为学生购买A,B两种型号“文房四宝”共40套.已知某文化用品店每套A型号的“文房四宝”的标价比B型号的“文房四宝”的标价高30%,若按标价购买需花费4300元,其中购买B型号“文房四宝”花费3000元.

    问题解决:

    1. (1) 求每套B型号的“文房四宝”的标价.
    2. (2) 若经过与店主协商,考虑到购买较多,店主同意该中学按A型号“文房四宝”九折,B型号“文房四宝”八折的优惠价购入,则购买原定数量的A,B型号“文房四宝”共需花费多少元?
    3. (3) 一段时间后,由于传统文化广受关注,另一所学校想要购入A,B两种型号“文房四宝”共100套。店主继续以(2)中的折扣价进行销售,已知A,B两种型号的“文房四宝”每套进价分别为67元和50元,若通过此单生意,该店主获利不低于3800元,则该校在这家店至少买了套A型“文房四宝”?
  • 25. (2024八上·浑江期末)  某企业有甲、乙两个车间用于生产医用防护服.甲车间每天生产的数量是乙车间每天生产数量的1.5倍,两车间各加工6000套医用防护服,甲车间比乙车间少用4天.
    1. (1) 甲、乙两车间每天各生产多少套医用防护服?
    2. (2) 已知甲、乙两车间生产这种医用防护服每天的生产费用分别是12000元和10000元,现有18000套医用防护服的生产任务,甲车间单独生产一段时间后另有安排,剩余任务由乙车间单独完成.如果总生产费用不超过339000元,则甲车间至少需要生产几天?
  • 26. (2023九上·怀仁月考) 某公园要铺设广场地面,其图案设计如图所示.矩形地面的长为50米,宽为32米,中心建设一个直径为10米的圆形喷泉,四周各角留一个相同的矩形花坛,图中阴影处铺设地砖.已知矩形花坛的长比宽多15米,铺设地砖的面积是1125平方米.(取3)

    1. (1) 求矩形花坛的宽是多少米;
    2. (2) 四个角的矩形花坛由甲、乙两个工程队负责绿化种植,甲工程队每平方米施工费为100元,乙工程队每平方米施工费为120元.若完成此工程的工程款不超过42000元,至少要安排甲队施工多少平方米?
六、方程组与不等式结合
  • 27. (2024八上·防城期末) 【综合与实践】

    学校在某商场购买甲、乙两种不同类型的足球,相关信息如下:购买甲种足球共用2000元,购买乙种足球共花费1400元.已知购买一个乙种足球比购买一个甲种足球多花20元.设购买一个甲种足球的单价是元。

    1. (1) 请用含的代数式分别表示购买甲、乙两种足球的数量;
    2. (2) 若本次购买甲种足球的数量是购买乙种足球数量的2倍,求甲、乙两种足球在此商场的销售单价;
    3. (3) 为满足学生需求,这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的销售单价进行调整,甲种足球的销售单价比上次购买时提高了10%,乙种足球的销售单价比上次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2950元,求这所学校最多可以购买乙种足球的数量.
  • 28. (2023八上·南宁开学考) 某商场“双”前准备从供货商家处新选购一批商品,已知按进价购进件甲种商品和件乙种商品共需元,购进件甲种商品和件乙种商品共需元.
    1. (1) 求甲、乙两种商品每件的进价分别是多少元?
    2. (2) 若甲种商品的售价为每件元,乙种商品的售价为每件元,该商场准备购进甲、乙两种商品共件,且这两种商品全部售出后总利润不少于元,不高于元.若购进甲种商品件,请问该商场共有哪几种进货方案?
    3. (3) 根据往年销售情况,商场计划在“双”当天将现有的甲、乙两种商品共件按中的售价全部售完.但因受拉尼娜现象形成的冷空气持续影响,当天出现的雨雪天气使得件商品没有全部售完,两种商品的实际销售利润总和为元.那么,“双”当天商场至少卖出乙种商品多少件?
  • 29. (2023八下·江岸期末) 为了迎接“十·一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:

    运动鞋价格/种类

    进价(元/双)

    m

             

    售价(元/双)

    160

    120

    已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.

    1. (1) 求m的值;
    2. (2) 要使购进的甲、乙两种运动鞋共200双的总利润(利润售价进价)不少于10800元,且不超过11100元,问该专卖店有几种进货方案?
    3. (3) 在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠元出售.乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?
七、实践探究题

微信扫码预览、分享更方便

试卷信息