一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求的.
-
-
A . 1
B .
C .
D . 3
-
A . 4
B . 6
C . 10
D . 24
-
-
-
-
7.
(2024高二下·广东期中)
某莲藕种植塘每年的固定成本是2万元,每年最大规模的种植量是10万斤,每种植1斤藕,成本增加1元.销售额
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ey%3C%2Fmi%3E%3C%2Fmath%3E)
(单位:万元)与莲藕种植量
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmath%3E)
(单位:万斤)满足
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E6%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmath%3E)
(
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ea%3C%2Fmi%3E%3C%2Fmath%3E)
为常数),若种植3万斤,利润是
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
万元,则要使销售利润最大,每年需种植莲藕( )
A . 7万斤
B . 8万斤
C . 9万斤
D . 10万斤
-
8.
(2024高二下·惠州月考)
定义在
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmn%3E%2C%3C%2Fmn%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmtext%3E%E2%88%9E%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
上的函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
满足:对于定义域上的任意
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
, 当
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%E2%89%A0%3C%2Fmo%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
时,恒有
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmath%3E)
, 则称函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
为“理想函数”.给出下列四个函数:
①
;②
;③
;④
能被称为“理想函数”的有( )
A . 0个
B . 1个
C . 2个
D . 3个
二、多选题:本小题共3题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
-
A . 已知函数
在
上可导,若
, 则
B . 已知函数
, 若
, 则
C . 若函数
, 则
的极大值为
D . 设函数
的导函数为
, 且
, 则
-
A .
有两个极值点
B .
有三个零点
C . 直线
是曲线
的切线
D . 若
在区间
上的最大值为3,则
-
三、填空题:本题共3小题,每小题5分,共15分.
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
-
-
(1)
求曲线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmath%3E)
在点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E%2C%3C%2Fmn%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E%29%3C%2Fmn%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmath%3E)
处的切线方程;
-
(2)
求函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Eh%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmath%3E)
的单调区间.
-
-
(1)
求数列
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%7B%3C%2Fmo%3E%3Cmrow%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3Cmo%3E%7D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的通项公式;
-
-
-
(1)
求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
;
-
-
-
(1)
求椭圆
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EE%3C%2Fmi%3E%3C%2Fmath%3E)
的方程;
-
(2)
若直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Em%3C%2Fmi%3E%3C%2Fmath%3E)
与圆
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EO%3C%2Fmi%3E%3Cmn%3E%3A%3C%2Fmn%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Ey%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Eb%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmath%3E)
相切,且与
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EE%3C%2Fmi%3E%3C%2Fmath%3E)
交于不同的两点
R ,
S , 求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3ER%3C%2Fmi%3E%3Cmi%3ES%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的取值范围.
-
-
(1)
证明不等式:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsup%3E%3Cmrow%3E%3Cmtext%3Ee%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmn%3El%3C%2Fmn%3E%3Cmn%3En%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmath%3E)
(第一问必须用隐零点解决,否则不给分);
-
(2)
已知函数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmn%3E%29%3C%2Fmn%3E%3Cmsup%3E%3Cmrow%3E%3Cmtext%3Ee%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmsup%3E%3Cmrow%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmath%3E)
有两个零点.求
a的取值范围.(第二问必须用分段讨论解决,否则不给分)