①分别求出药物燃烧时及一次性燃烧完以后y关于x的函数表达式.
②当每立方米空气中的含药量低于时,对人体方能无毒害作用,那么从消毒开始,在哪个时间段学生不能停留在教室里?
如何设计拱桥上救生圈的悬挂方案? | ||
素材1 | 图1是一座抛物线形拱桥,以抛物线两个水平最低点连线为x轴,抛物线离地面的最高点的铅垂线为y轴建立平面直角坐标系,如图2所示. 某时测得水面宽 , 拱顶离水面最大距离为10m,抛物线拱形最高点与x轴的距离为5m.据调查,该河段水位在此基础上再涨1m达到最高. | |
素材2 | 为方便救助溺水者,拟在图1的桥拱上方栏杆处悬挂救生圈,如图3,救生圈悬挂点为了方便悬挂,救生圈悬挂点距离抛物线拱面上方1m,且相邻两救生圈悬挂点的水平间距为4m.为美观,放置后救生圈关于y轴成轴对称分布.(悬挂救生圈的柱子大小忽略不计) | |
问题解决 | ||
任务1 | 确定桥拱形状 | 根据图2,求抛物线的函数表达式. |
任务2 | 拟定设计方案 | 求符合悬挂条件的救生圈个数,并求出最右侧一个救生圈悬挂点的坐标. |
任务3 | 探究救生绳长度 | 当水位达到最高时,上游个落水者顺流而下到达抛物线拱形桥面的瞬间,若要确保救助者把拱桥上任何一处悬挂点的救生圈抛出都能抛到落水者身边,求救生绳至少需要多长.(救生圈大小忽略不计,结果保留整数) |
①当点P和点重合时,画出图形,求BQ的长,并说明理由.
②AP=m,BQ=n.请探究m,n之间的关系.