当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省杭州市西湖区2024年中考二模数学试卷

更新时间:2024-07-16 浏览次数:55 类型:中考模拟
一、选择题(本题有10小题,每小题3分,共30分)
二、填空题(本题有6小题,每小题3分,共18分)
三、解答题(本题共有8小题,共72分)
  • 17. (2024·杭州模拟) 解不等式:5x﹣3<3(1+x).小州同学在数学课上给了如下的解题过程,他做对了吗?若不对,请你帮助他写出正确的解题过程。

  • 18. (2024·杭州模拟) 如图,在△ABC中,∠BAC=90°,点D是BC中点,分别过点A,D作BC,BA的平行线交于点E,且DE交AC于点O,连结CE.AD.

    1. (1) 求证:四边形ADCE是菱形;
    2. (2) 若tan∠B= , AB=3,求四边形ADCE的面积.
  • 19. (2024·杭州模拟) 已知二次函数y=x2﹣ax+b在x=-1和x=5时的函数值相等.
    1. (1) 求二次函数y=x2﹣ax+b图象的对称轴;
    2. (2) 若二次函数y=x2﹣ax+b的图象与x轴只有一个交点,求b的值.
  • 20. (2024·杭州模拟) 某校准备从甲、乙两名同学中选派一名参加全市组织的“学宪法,讲宪法”比赛,分别对两名同学进行了八次模拟测试,每次测试满分为100分,现将测试结果绘制成如下统计图表,请根据统计图表中的信息解答下列问题:


    平均(分)

    众数(分)

    中位数(分)

    方差(分2)

    75

    a

    b

    93.75

    75

    80,75,70

    75

    S2

    1. (1) 表中a=,b=
    2. (2) 求乙得分的方差;
    3. (3) 根据已有的信息,你认为应选谁参赛较好,请说明理由.
  • 21. (2024·杭州模拟) 始建于唐中和四年的湖州“飞英塔”,至今已有千年的历史,曾有“舍利石塔”之称.某校九年级数学实践活动小组计划采用无人机辅助的方法测量铁塔AB的高度,小组方案如下:无人机在距地面120米的空中水平飞行,在点C处测得塔尖A的俯角为37°,到点D处测得塔尖A的俯角为45°,测得飞行距离CD为140米.

    请根据测得的数据,求出铁塔AB的高度.(结果精确到0.1m)

    (参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.41,≈1.73)

  • 22. (2024·杭州模拟) 概念阐述:

    在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,格点多边形的面积为S.

    1. (1) 定量研究:

      填表:观察图①~④,当我们规定多边形内的格点数a为4时,统计各多边形边界上的格点数为b和格点多边形的面积为S.

      b(个)

      6

      7

      11

      S(平方单位)

      7.5

      8.5

    2. (2) 描点:建立直角坐标系,将表格中所得数据画在坐标系中,判断S关于b的函数类型,并求出表达式.

    3. (3) 结论应用:

      结合你所得到的结论,探索是否存在面积最小的多边形,满足多边形内的格点数a=4,若存在,请画出图形;若不存在,请说明理由.

  • 23. (2024·杭州模拟) 问题:如何设计击球路线?

    情境:某校羽毛球社团的同学们经常运用数学知识对羽毛球技术进行分析,下面是他们对击球线路的分析.如图,在平面直角坐标系中,点A在x轴上,球网AB与y轴的水平距离OA=3m,击球点P在y轴上.

    击球方案:

    扣球

    羽毛球的飞行高度y(m)与水平距离x(m)近似满足一次函数关系C1:y=﹣0.4x+b,当羽毛球的水平距离为1m时,飞行高度为2.4m.

    吊球

    羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系C2 , 此时当羽毛球飞行的水平距离是1米时,达到最大高度3.2米.

    高远球

    羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系C3:y=a(x-n)2+h,且飞行的最大高度在4.8m和5.8m之间.

    探究:

    1. (1) 求扣球吊球时,求羽毛球飞行满足的函数表达式;
    2. (2) ①若选择扣球的方式,刚好能使球过网,求球网AB的高度为多少;

      ②若选择吊球的方式,求羽毛球落地点到球网的距离;

    3. (3) 通过对本次训练进行分析,若高远球的击球位置P保持不变,接球人站在离球网4m处,他可前后移动各1m,接球的高度为2.8m,要使得这类高远球刚好让接球人接到,请求出此类高远球抛物线解析式a的取值范围.
  • 24. (2024·杭州模拟) 如图,在中, , 以C为圆心,为半径作圆.点D为AB上的动点,DP、DQ分别切圆C于点P、点Q,连结PQ,分别交AC和BC于点E、F,取PQ的中点M.

    1. (1) 当时,求劣弧PQ的度数;
    2. (2) 当时,求AD的长;
    3. (3) 连结.

      ①证明:.

      ②在点D的运动过程中,BM是否存在最小值?若存在,直接写出BM的值;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息