当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湖北省恩施州宣恩县2024年中考三模数学试题

更新时间:2024-08-13 浏览次数:20 类型:中考模拟
一、选择题(本大题共有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)
二、填空题(本大题共有5个小题,每小题3分,共15分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)
三、解答题(本大题共有9个小题,共75分.请在答题卷指定区域内作答,解答时应写出文字说明.证明过程或演算步骤)
  • 16. (2024·宣恩模拟) 解不等式 , 并将不等式的解集在数轴上表示出来.

    解:去分母得:  _▲_  

    移项得: _▲    

    合并得:  _▲   

    系数化为1:    ▲  

  • 17. (2024·宣恩模拟) 如图,在中, , 点DAB上,连接CDBE的高.

    1. (1) 尺规作图:作的角平分线交CD于点F
    2. (2) 在(1)的条件下,若求证.
  • 18. (2024·宣恩模拟) 某班举行五四青年节的相关活动,决定到距离学校120千米的地方进行研学活动,现有A型客车、和B型小轿车各一辆,已知在在行驶过程中小轿车的速度比客车的速度快20千米/时,两车同时出发,当小轿车到达目的地后客车距离目的地还有30千米,问小轿车和客车的速度分别是多少?
  • 19. (2024·宣恩模拟) 某校数学兴趣小组为调查学校七八年级学生对A、B两款刷卡系统的满意度,设计了如下的调查问卷,并在全校七八年级学生中随机抽取20名同学完成下列问卷:

    对学校A、B两款刷卡系统的满意度调查

    1、请你分别为学校A、B两款刷卡系统打分A系统:____分、B系统:____分

    提示:满分是100分,最低分0分,分值分为不满意,为比较满意,为满意,为非常满意

    通过小组内学生对信息的收集和整理得到了以下调查报告(不完整)

    调查目的

    1、调查学校七八年级学生对A、B两款刷卡系统的满意度;

    2、给学校刷卡系统提出合理建议。

    调查方式

    抽样调查

    调查对象

    七八年级部分学生

    A款

    B款

    A款所有打分为:68、69、76、78、81、

    84、85、86、87、87、87、89、95、97、

    98、98、98、98、99、100

    其中的所有数据为:87、85、87、83、85、89

    评分统计表

    系统

    平均数

    中位数

    众数

    非常满意占比

    A

    88

    87

    b

    c

    B

    88

    a

    96

    45%

    建议

     
    1. (1) 填空:
    2. (2) 该校七八年级共有800人,估计七八年级学生对A款系统“比较满意”的人数?
    3. (3) 根据以上数据,你认为哪一款刷卡系统更受七八年级学生的欢迎?请说明理由(写一条即可).
  • 20. (2024·宣恩模拟) 如图,已知函数x轴于点A , 交y轴于点D , 与反比例函数的图象相交于B点,且DE所在直线AD关于y轴对称,交x轴于点E , 点F是线段DE的中点,连接OF , 点G是直线OF上一动点,连接DGBG.

    1. (1) 求a的值及点A的坐标,并直接写出的解析式;
    2. (2) 求的面积;
    3. (3) 直接写出当时,对应的x的取值范围.
  • 21. (2024·宣恩模拟) 如图,等腰内接于 , 点E上的点(不与点AC重合)连接BE , 并延长至点G , 连接AE并延长至点FBEAC相交于点D.

    1. (1) 求证:
    2. (2) 若的半径为5, , 点DAC的中点,求BD的长.
  • 22. (2024·宣恩模拟) 随着旅游业的发展,某地的烤活鱼走进了广大群众的视野,深受游客们的喜爱,五一期间某公司为满足供货需求,提前从甲地购买海鲜、蔬菜、肉类三种物资共100吨,计划组织20辆汽车装运,要求20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满,每种物资至少装运1辆车,每辆汽车的运载量和每吨所需运费如下表.

    物资种类

    肉类

    海鲜

    蔬菜

    每辆汽车运载量/吨

    6

    5

    4

    每吨所需运费/元

    120

    160

    100

    1. (1) 设x辆汽车装运肉类,y辆汽车装运海鲜,用含xy的式子填写下表;

      物资种类

      肉类

      海鲜

      蔬菜

      装运汽车数量(辆)

      x

      y

      装运物品的总量(吨)

      6x

    2. (2) 已知100吨物资恰好运完,试求yx的函数关系式,并求出共有多少种装运方案;
    3. (3) 请求出在(2)的条件下怎样装运花费费用最少?最少费用是多少?
  • 23. (2024·宣恩模拟) 综合与探究

    问题背景:如图3,四边形ABCD是矩形, , 点GHE分别是线段ADBCAB上的动点,连接GH , 过点EGH的垂线交线段CD于点F(只考虑FCD上的情况)

    图1

    图2

    图3

    图4

    1. (1) ①如图1,当点G运动到A点,点E运动到B点时,若 , 则的值为            (直接写答案)

      ②如图2,当点G不与A点重合,点E运动到B点时,若 , 试求的值.

    2. (2) 问题探究:如图3,当G不与A重合,E不与B重合时,用含m的式子表示的值.
    3. (3) 问题拓展:如图4,将背景问题中的矩形改成已知“在四边形GBCF中, , 则的值为.(直接写答案).
  • 24. (2024·宣恩模拟) 如图,二次函数的图象与x轴交于B两点,与y轴交于点C , 且顶点为 , 连接BC.

    图① 图②

    1. (1) 求抛物线的解析式;
    2. (2) 如图①,在BC的上方抛物线上存在一点P , 已知P点的横坐标为t , 过点PBC于点Q , 则是否存在最大值,若存在求出最大值,若不存在请说明理由;
    3. (3) 如图②,连接CA , 抛物线上是否存在点M , 使得 , 如果存在,请求出直线CMx轴的交点坐标,不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息