当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湖北省宜昌市当阳市2023-2024学年八年级下学期期末考试...

更新时间:2024-08-07 浏览次数:12 类型:期末考试
一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共10小题,每题3分,计30分)
二、填空题.(本大题满分15分,共5小题,每小题3分)
三、解答题.(本大题满分75分,共9小题)
  • 17. (2024八下·当阳期末) 如图,直线ykx+2(k≠0)经过点A(2,6).

    1. (1) 求k的值;
    2. (2) 求直线与x轴、y轴的交点坐标.
  • 18. (2024八下·当阳期末) 现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市部分教师某日“微信运动”中的步数情况进行统计整理,绘制了统计表:

    组别

    步数

    频数

    频率

    1

    0≤x<4000

    6

    a

    2

    4000≤x<84000

    14

    0.28

    3

    8000≤x<12000

    15

    b

    5

    12000≤x<16000

    10

    0.2

    6

    16000≤x<20000

    c

    0.06

    7

    20000≤x<24000

    2

    0.04

    请根据以上信息,解答下列问题:

    1. (1) 本次调查的教师人数为 人,a
    2. (2) 这组数据的中位数落在第 组内;
    3. (3) 本市约有2000名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
  • 19. (2024八下·当阳期末) 如图,在四边形ABCD中,对角线ACBD相交于点O , 且AOCOADBC

    1. (1) 求证:四边形ABCD为平行四边形;
    2. (2) 若AB=10,OA=6,BD=16.

      ①求∠BOA的度数;

      ②求四边形ABCD的面积.

  • 20. (2024八下·当阳期末) 如图是由边长为1的小正方形组成的6×6的网格,△ABC的三个顶点ABC均在格点上.

    1. (1) 如图1,判断△ABC的形状,并说明理由;
    2. (2) 请按要求在给定的网格中,仅用无刻度的直尺,在图2中的BC上找一点D , 画线段AD , 使ADBC , 保留作图痕迹,不写画法.
  • 21. (2024八下·当阳期末) A超市在星期天进行某种水果优惠促销活动,该种水果的标价为10元/kg , 如果一次购买5kg以上的该种水果,超过5kg的部分按标价6折售卖.

    x(单位:kg)表示购买该种水果的重量,y(单位:元)表示付款金额.

    1. (1) 小明购买4kg该种水果需付款 元;购买6kg该种水果需付款 元;
    2. (2) 求付款金额y关于购买该种水果的重量x的函数解析式;
    3. (3) 当天,隔壁的B超市也在进行该种水果优惠促销活动,同样的该种水果的标价也为10元/kg , 且全部按标价的8折售卖.小明如果要购买9kg该种水果,请问她在哪个超市购买更划算?
  • 22. (2024八下·当阳期末) 已知△ABC和△ADE都是等腰直角三角形,∠CAB=∠EAD=90°,△ADE绕着顶点A旋转.

    1. (1) 如图1,若D点恰好落在BC边上,连接CE

      ①求证:BDCE

      ②若GAC中点,连接GE , 当点D在直线BC上运动时,若AC=10,求线段GE的最小值;

    2. (2) 若D不在BC边上,DEAC于点F , 且AB=10,AD=6 . 当△CEF是直角三角形时,求BD长.(图2,图3是备用图)
  • 23. (2024八下·当阳期末) 已知,在矩形ABCD中.

    1. (1) 若点F是矩形ABCD边上一点,点E在边AB上,连接CEAEBC

      ①如图1,点F在边AD上,且AFBE , 连接EF . 求∠CFE的度数;

      ②如图2,点F在边BC上,且BECF , 连接AFCE于点G , 过CCHAFADH . 求∠AGE的度数.

    2. (2) 如图3,在矩形ABCD中,若E是边DC上一动点,将△CBE沿BE折叠后得到△NBE , 点N在矩形ABCD内部(不含边),射线BN分别交射线BC , 射线DC于点MFAB=8,AD=6.

      ①当点EDC的中点时,求线段DF的长;

      ②点E在运动过程中,求出△DEN的周长的最小值.

  • 24. (2024八下·当阳期末) 如图1,直线 x轴交于点B , 与y轴交于点A , 直线ACx轴于点C , △AOC沿直线AC折叠,点O恰好落在直线AB上的点D处.

    1. (1) 求点C的坐标;
    2. (2) 如图2,直线AC上的两点EF , △BEF是以EF为斜边的等腰直角三角形,求点E的坐标;
    3. (3) 如图3,若ODAC于点G , 在线段AB上是否存在一点H , 使△ADC与△AGH的面积相等,若存在求出H点坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息