在进行代数式化简时,我们有时会碰上如 , 这样的式子,其实我们还可以将其进一步化简:
(一) ,
(二) ,
(三) .
以上这种化简的方法叫分母有理化.
【问题情境】
数学综合与实践活动课上,老师提出如下问题:一个三级台阶,它每一级的长、宽、高分别为20、3、2,A和B是一个台阶两个相对的端点.
【探究实践】
老师让同学们探究:如图①,若A点处有一只蚂蚁要到B点去吃可口的食物,那么蚂蚁沿着台阶爬到B点的最短路程是多少?
(1)同学们经过思考得到如下解题方法:如图②,将三级台阶展开成平面图形,可得到长为20,宽为15的长方形,连接 , 经过计算得到长度为______,就是最短路程.
【变式探究】
(2)如图③,是一只圆柱形玻璃杯,该玻璃杯的底面周长是30 cm,高是8 cm,若蚂蚁从点A出发沿着玻璃杯的侧面到点B,则蚂蚁爬行的最短距离为______.
【拓展应用】
(3)如图④,圆柱形玻璃杯的高9 cm,底面周长为16 cm,在杯内壁离杯底4 cm的点A处有一滴蜂蜜,此时,一只蚂蚁正好在外壁上,离杯上沿1 cm,且与蜂蜜相对的点B处,则蚂蚁从外壁B处到内壁A处所爬行的最短路程是多少?(杯壁厚度不计)
材料一:数学上有一种根号内又带根号的数,它们能通过完全平方式及二次根式的性质化去一层(或多层)根号,如: .
材料二:配方法是初中数学思想方法中的一种重要的解题方法,配方法的最终目的就是配成完全平方式,利用完全平方式来解决问题,它的应用非常广泛,在解方程、化简根式、因式分解等方面都经常用到.
如: ,
,
, 即 .
的最小值为1.
阅读上述材料解决下面问题: