(Ⅰ)应从老、中、青员工中分别抽取多少人?
(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为 .享受情况如右表,其中“ ”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
员工 项目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
继续教育 | × | × | ○ | × | ○ | ○ |
大病医疗 | × | × | × | ○ | × | × |
住房贷款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
赡养老人 | ○ | ○ | × | × | × | ○ |
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件 发生的概率.
(Ⅰ)用 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量 的分布列和数学期望;
(Ⅱ)设 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件 发生的概率.
记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.
y的分组 | [-0.20,0) | [0,0.20) | [0.20,0.40) | [0.40,0.60) | [0.60,0.80) |
企业数 | 2 | 24 | 53 | 14 | 7 |
附:
支付金额 支付方式 |
不大于2000元 |
大于2000元 |
仅使用A |
27人 |
3人 |
仅使用B |
24人 |
1人 |
(I)估计该校学生中上个月A,B两种支付方式都使用的人数;
(II)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;
(III)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中,随机抽查1人,发现他本月的支付金额大于2000元,结合(II)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.
支付金额(元) 支付方式 |
(0,1000] |
(1000,2000] |
大于2000 |
仅使用A |
18人 |
9人 |
3人 |
仅使用B |
10人 |
14人 |
1人 |
(I)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;
(II)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;
(III)已知上个月样本学生的支付方式在本月没有变化。现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元,根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.
满意 |
不满意 |
|
男顾客 |
40 |
10 |
女顾客 |
30 |
20 |
附:K2=
P(K2≧k) | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
(i)证明: (i=0,1,2,…,7)为等比数列;
(ii)求P4 , 并根据P4的值解释这种试验方案的合理性。