当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

四川省乐山市井研县2019年中考数学5月模拟考试试卷

更新时间:2020-05-15 浏览次数:175 类型:中考模拟
一、选择题
二、填空题
三、计算题
四、综合题
  • 19. (2019·井研模拟) 如图,在△ABC中,DBC边上的一点,EAD的中点,过点ABC的平行线交CE的延长线于点F , 且AFBD , 连接BF

    1. (1) 求证:DBC的中点;
    2. (2) 若BAAC , 试判断四边形AFBD的形状,并证明你的结论.
  • 20. (2019·井研模拟) 为调查我市民上班时最常用的交通工具的情况随机抽取了部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车;E . 其他”中选择最常用的一项.将所有调查结果整理后绘制成如下不完整计图,请结合统计图回答下列问题:

    1. (1) 本次一共调查了名市民;扇形统计图中B项对应的圆心角是度;
    2. (2) 补全条形统计图;
    3. (3) 若甲、乙两人上班时从ABCD四种交通工具中随或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率.
  • 21. (2021·黄石模拟) 已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.
    1. (1) 若该方程有两个实数根,求m的最小整数值;
    2. (2) 若方程的两个实数根为x1 , x2 , 且(x1﹣x22+m2=21,求m的值.
  • 22. (2019·井研模拟) 某游乐场一转角滑梯如图所示,滑梯立柱ABCD均垂直于地面,点E在水平地面上BD上,在C点测得点A的仰角为30°,斜面EC的坡度为1: ,测得BE间距离为10米,立柱AB高30米,求立柱CD的高(结果保留根号).

  • 23. (2019·井研模拟) 如图,反比例函数yk≠0)的图象与正比例函数y=2x的图象相交于A(1,a)、B两点,点C在第四象限,CAy轴,且CBAB

    1. (1) 求反比例函数的解析式及点B的坐标;
    2. (2) 求tanC的值和△ABC的面积.
  • 24. (2019·井研模拟) 如图所示,AB是⊙O的直径,G为弦AE的中点,OG的延长线交⊙O于点D , 连接BDAE于点F , 延长AE至点C , 使得FCBC , 连接BC

    1. (1) 求证:BC是⊙O的切线;
    2. (2) ⊙O的半径为10,tanA ,求BF的长.
  • 25. (2019·井研模拟) 阅读材料:各类方程的解法

    求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想 转化,把未知转化为已知.

    用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.

    1. (1) 问题:方程x3+x2-2x=0的解是x1=0,x2=,x3=
    2. (2) 拓展:用“转化”思想求方程 的解;
    3. (3) 应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.
  • 26. (2019·井研模拟) 如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.

    1. (1) 求抛物线的表达式;
    2. (2) 设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
    3. (3) 如图2,连接BC,PB,PC,设△PBC的面积为S.

      ①求S关于t的函数表达式;

      ②求P点到直线BC的距离的最大值,并求出此时点P的坐标.

微信扫码预览、分享更方便

试卷信息