当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市2020年中考数学试卷

更新时间:2020-08-06 浏览次数:861 类型:中考真卷
一、单选题
二、填空题
三、解答题
  • 20. (2020·北京) 已知:如图, ABC为锐角三角形,AB=BC,CD∥AB.

    求作:线段BP,使得点P在直线CD上,且∠ABP=

    作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作线段.

    1. (1) 使用直尺和圆规,依作法补全图形(保留作图痕迹)
    2. (2) 完成下面的证明.

      证明:∵CD∥AB,

      ∴∠ABP=

      ∵AB=AC,

      ∴点B在⊙A上.

      又∵∠BPC= ∠BAC()(填推理依据)

      ∴∠ABP= ∠BAC

  • 21. 如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.

    1. (1) 求证:四边形OEFG是矩形;
    2. (2) 若AD=10,EF=4,求OE和BG的长.
  • 22. (2023九上·丰台期中) 在平面直角坐标系 中,一次函数 的图象由函数 的图象平移得到,且经过点(1,2).
    1. (1) 求这个一次函数的解析式;
    2. (2) 当 时,对于 的每一个值,函数 的值大于一次函数 的值,直接写出 的取值范围.
  • 23. (2021·杭州模拟) 如图,AB为⊙O的直径,C为BA延长线上一点,CD是⊙O的切线,D为切点,OF⊥AD于点E,交CD于点F.

    1. (1) 求证:∠ADC=∠AOF;
    2. (2) 若sinC= ,BD=8,求EF的长.
  • 24. (2021·驻马店模拟) 小云在学习过程中遇到一个函数 .下面是小云对其探究的过程,请补充完整:
    1. (1) 当 时,对于函数 ,即 ,当 时, 随x的增大而,且 ;对于函数 ,当 时, 随x的增大而,且 ;结合上述分析,进一步探究发现,对于函数 ,当 时,y随x的增大而
    2. (2) 当 时,对于函数 ,当 时,y与x的几组对应值如下表:

      x

      0

      1

      2

      3

      y

      0

      1

      综合上表,进一步探究发现,当 时,y随x的增大而增大.在平面直角坐标系 中,画出当 时的函数y的图象.

    3. (3) 过点(0,m)( )作平行于x轴的直线l,结合(1)(2)的分析,解决问题:若直线l与函数 的图象有两个交点,则m的最大值是
  • 25. (2022·烟台模拟) 小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:

    a.小云所住小区5月1日至30日的厨余垃圾分出量统计图:

    b.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:

    时段

    1日至10日

    11日至20日

    21日至30日

    平均数

    100

    170

    250

    1. (1) 该小区5月1日至30日的厨余垃圾分出量的平均数约为(结果取整数)
    2. (2) 已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的倍(结果保留小数点后一位);
    3. (3) 记该小区5月1日至10日的厨余垃圾分出量的方差为 5月11日至20日的厨余垃圾分出量的方差为 ,5月21日至30日的厨余垃圾分出量的方差为 .直接写出 的大小关系.
  • 26. (2020·北京) 在平面直角坐标系 中, 为抛物线 上任意两点,其中
    1. (1) 若抛物线的对称轴为 ,当 为何值时,
    2. (2) 设抛物线的对称轴为 .若对于 ,都有 ,求t的取值范围.
  • 27. (2020·北京) 中,∠C=90°,AC>BC,D是AB的中点.E为直线上一动点,连接DE,过点D作DF⊥DE,交直线BC于点F,连接EF.

    1. (1) 如图1,当E是线段AC的中点时,设 ,求EF的长(用含 的式子表示);
    2. (2) 当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明.
  • 28. (2020·北京) 在平面直角坐标系 中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦 分别为点A,B的对应点),线段 长度的最小值称为线段AB到⊙O的“平移距离”.

    1. (1) 如图,平移线段AB到⊙O的长度为1的弦 ,则这两条弦的位置关系是;在点 中,连接点A与点的线段的长度等于线段AB到⊙O的“平移距离”;
    2. (2) 若点A,B都在直线 上,记线段AB到⊙O的“平移距离”为 ,求 的最小值;
    3. (3) 若点A的坐标为 ,记线段AB到⊙O的“平移距离”为 ,直接写出 的取值范围.

微信扫码预览、分享更方便

试卷信息