当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

河南省驻马店市、天宏2021年数学中考一模大联考试卷

更新时间:2024-07-13 浏览次数:234 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 17. (2021·驻马店模拟) 全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.

    根据上面图表信息,回答下列问题:

    1. (1) 截止5月31日该国新冠肺炎感染总人数累计为万人,扇形统计图中40﹣59岁感染人数对应圆心角的度数为°;
    2. (2) 请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;
    3. (3) 在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;
    4. (4) 若该国感染病例中从低到高各年龄段的死亡率依次为1%,2.75%,3.5%,10%,20%,求该国新冠肺炎感染病例的平均死亡率.
  • 18. (2021·驻马店模拟) 如图,一艘船由A港沿北偏东65°方向航行34km到B港,然后再沿北偏西42°方向航行至C港,已知C港在A港北偏东20°方向.

    1. (1) 直接写出∠C的度数;
    2. (2) 求A、C两港之间的距离.(结果用含非特殊角的三角函数及根式表示即可)
  • 19. (2022·云南模拟) 某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件

    1. (1) 如图,设第x(0<x≤20)个生产周期设备售价z万元/件,zx之间的关系用图中的函数图象表示,求z关于x的函数解析式(写出x的范围).
    2. (2) 设第x个生产周期生产并销售的设备为y件,yx满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂在第几个生产周期创造的利润最大?最大为多少万元?(利润=收入-成本)
  • 20. (2021·驻马店模拟) 小云在学习过程中遇到一个函数 .下面是小云对其探究的过程,请补充完整:
    1. (1) 当 时,对于函数 ,即 ,当 时, 随x的增大而,且 ;对于函数 ,当 时, 随x的增大而,且 ;结合上述分析,进一步探究发现,对于函数 ,当 时,y随x的增大而
    2. (2) 当 时,对于函数 ,当 时,y与x的几组对应值如下表:

      x

      0

      1

      2

      3

      y

      0

      1

      综合上表,进一步探究发现,当 时,y随x的增大而增大.在平面直角坐标系 中,画出当 时的函数y的图象.

    3. (3) 过点(0,m)( )作平行于x轴的直线l,结合(1)(2)的分析,解决问题:若直线l与函数 的图象有两个交点,则m的最大值是
  • 21. (2022·平邑模拟) 古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.

    1. (1) 求证:CD是⊙O的切线;
    2. (2) 小明在研究的过程中发现 是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.
  • 22. (2021·驻马店模拟) 希腊数学家帕普斯给出了一种“三等分锐角”的方法,具体如下:

    ①建立平面直角坐标系,将已知锐角∠AOB的顶点与原点O重合,角的一边OB与x轴正方向重合;

    ②在平面直角坐标系中,绘制函数 的图象,图象与已知角的另一边OA交于点P;

    ③以P为圆心,2OP为半径作弧,交函数 的图象于R点;

    ④分别过点P和R作x轴和y轴的平行线,两线相交于点M、Q;

    ⑤连接OM,得到∠MOB,这时∠MOB= ∠AOB.

    根据以上材料解答下列问题:

    1. (1) 设点P的坐标为(a, ),点R的坐标为(b, ),则点M的坐标为
    2. (2) 求证:点Q在直线OM上;
    3. (3) 求证:∠MOB= ∠AOB.
  • 23. (2019九上·交城期末) 请完成下面的几何探究过程:

    1. (1) 观察填空:如图1,在Rt△ABC中,∠C=90°,AC=BC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°得到线段CE,连DE,BE,则

      ①∠CBE的度数为

      ②当BE=时,四边形CDBE为正方形.

    2. (2) 探究证明:如图2,在Rt△ABC中,∠C=90°,BC=2AC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°后并延长为原来的两倍得到线段CE,连DE,BE则:

      ①在点D的运动过程中,请判断∠CBE与∠A的大小关系,并证明;

      ②当CD⊥AB时,求证:四边形CDBE为矩形

    3. (3) 拓展延伸:如图2,在点D的运动过程中,若△BCD恰好为等腰三角形,请直接写出此时AD的长.

微信扫码预览、分享更方便

试卷信息