当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湖南省长沙市北雅中学2020-2021学年九年级上学期数学第...

更新时间:2021-03-04 浏览次数:253 类型:月考试卷
一、单选题
二、填空题
三、解答题
  • 19. (2020九上·长沙月考) 课间,老师给小明出了道思考题:如图1,已知AB//CD,要求用尺规作图法,在射线CD上找一点P,使射线AP平分∠BAC.小明忘记了课本上用尺规作图法作角平分线的方法,但突然灵机一动,说:“我有更简单的作法,如图2所示,只需要以点C为圆心,CA为半径画弧,交射线CD于点P,画射线AP,也能够得到AP平分∠BAC.”请根据小明的尺规作图方法,证明:AP平分∠BAC.

  • 20. (2020九上·长沙月考) 某中学为了解九年级学生对三大球类运动的喜爱情况,从九年级学生中随机抽取部分学生进行的卷调查,通过分析整理绘制了如图两幅统计图.请根据两幅统计图中的信息回答下列问题:

    1. (1) 本次调查一共抽取了名九年级学生,其中“喜爱足球”所在的扇形圆心角度数为
    2. (2) 补全条形统计图;
    3. (3) 若从喜爱足球运动的2名男生和2名女生中随机抽取2名学生,确定为该校足球运动员的重点培养对象,请用列表法或画树状图的方法求抽取的两名学生为一名男生和一名女生的概率.
  • 21. (2020九上·长沙月考) 如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.

    1. (1) 求证:BF=CF;
    2. (2) 若DG=8,求FG的长.
  • 22. (2020九上·长沙月考) “绿水青山就是金山银山”,某村为了绿化荒山,计划在植树节当天种植柏树和杉树.经调查,购买2棵柏树和3棵杉树共需850元;购买3棵柏树和2棵杉树共需900元.
    1. (1) 求柏树和杉树的单价各是多少元?
    2. (2) 本次绿化荒山,需购买柏树和杉树共80棵,且柏树的棵数不少于杉树的3倍,要使此次购树费用最少,柏树和杉树各需购买多少棵?
  • 23. (2020九上·长沙月考) 如图,CD是 的弦,AB是直径,AB与CD交于点P.

    1. (1) 如图1,当CD⊥AB于P时,

      ①若P为OB中点,求∠A的度数;

      ②若AB=10,PD=4,求BP的长;

    2. (2) 如图2,分别过点A、B作CD的垂线,垂足分别为E、F,若AB=10,CD=8,求 的值.
  • 24. (2020九上·长沙月考) 已知抛物线 (m为常数).
    1. (1) 若该抛物线经过点(1,m+7),求m的值;
    2. (2) 若抛物线上始终存在不重合的两点关于原点对称,求满足条件的最大整数m;
    3. (3) 将该抛物线向下平移若干个单位长度,所得的新抛物线经过P( ),Q(7, )(其中 )两点,当 时,点P是该部分函数图象的最低点,求m的取值范围.
  • 25. (2020九上·长沙月考) 对于抛物线 ,我们将它的顶点以及它与 轴的两个交点构成的三角形称为该抛物线的“内接三角形”.

    1. (1) 下列抛物线,有“内接三角形”的是;(填序号)

      ;② ;③

    2. (2) 如图1,抛物线 轴的交点分别为点A、点B(点A在点B左边),顶点为点D,该抛物线的“内接三角形”△ABD为等边三角形.

      ①求 的值;

      ②如图2,若该抛物线经过点(0,6),∠BAD的平分线交BD于点P,点M为射线AB上一点.连接直线PM交射线AD于点N,求 的值.

微信扫码预览、分享更方便

试卷信息