当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

福建省厦门市2020-2021学年九年级上学期数学期末试卷

更新时间:2021-04-02 浏览次数:305 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 18. (2020九上·厦门期末) 如图,在 中, ,以 为直径作 ,过点

    求证: 的切线.

  • 20. (2021九上·厦门期中) 2018年某贫困村人均纯收入为3000元,对该村实施精准扶贫后,2020年该村人均纯收入达到5070元,顺利实现脱贫.这两年该村人均纯收入的年平均增长率是多少?
  • 21. (2020九上·厦门期末) 某批发商从某节能灯厂购进了50盒额定功率为 的节能灯.由于包装工人的疏忽,在包装时混进了 的节能灯.每盒中混入 的节能灯数如表:

    每盒中混入 的节能灯数

    0

    1

    2

    3

    4

    盒数

    14

    25

    9

    1

    1

    1. (1) 平均每盒混入几个 的节能灯?
    2. (2) 从这50盒中任意抽取一盒,记事件 为:该盒中没有混入 的节能灯,求事件 的概率.
  • 22. (2020九上·厦门期末) 如图,菱形 的对角线 交于点 ,其中 .把 绕点 顺时针旋转得到 (点 的对应点为 ),旋转角为 为锐角).连接 ,若

    1. (1) 求证:
    2. (2) 当 时,判断点 与直线 的位置关系,并说明理由.
  • 23. (2020九上·厦门期末) 已知抛物线 ,其中 ,该抛物线与 轴交于点
    1. (1) 若点 在该抛物线上,求 的值;
    2. (2) 过点 作平行于 轴的直线 ,记抛物线在直线 轴之间的部分(含端点)为图象 .点 在直线 上,点 在图象 上,且 在抛物线对称轴的左侧.设点 的横坐标为 ,是否存在以 为顶点的四边形是边长为 的正方形?若存在,求出点 的坐标;若不存在,请说明理由.
  • 24. (2020九上·厦门期末) 某海湾有一座抛物线形拱桥,正常水位时桥下的水面宽为 (如图所示).由于潮汐变化,该海湾涨潮 后达到最高潮位,此最高潮位维持 ,之后开始退潮.如:某日16时开始涨潮,21时达到最高潮位,22时开始退潮.

    该桥的桥下水位相对于正常水位上涨的高度随涨潮时间 变化的情况大致如表所示.(在涨潮的 内,该变化关系近似于一次函数)

    涨潮时间 (单位:

    1

    2

    3

    4

    5

    6

    桥下水位上涨的高度(单位:

    4

    4

    1. (1) 求桥下水位上涨的高度(单位: )关于涨潮时间 ,单位: )的函数解析式;
    2. (2) 某日涨潮期间,某船务公司对该桥下水面宽度进行了三次测量,数据如表所示:

      涨潮时间 (单位:

      桥下水面宽(单位:

      现有一艘满载集装箱的货轮,水面以上部分高 ,宽 ,在涨潮期间能否安全从该桥下驶过?请说明理由.

  • 25. (2020九上·厦门期末) 中,∠B=90°,D是 外接圆上的一点,且点D是∠B所对的弧的中点.
    1. (1) 尺规作图:在图中作出点 ;(要求不写作法,保留作图痕迹)

    2. (2) 如图,连接 ,过点 的直线交边 于点 ,交该外接圆于点 ,交 的延长线于点 的延长线交于点

      ①若 ,求 的长;

      ②若 ,求 的度数

微信扫码预览、分享更方便

试卷信息