当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山西省吕梁市兴县2019-2020学年八年级下学期数学期中试...

更新时间:2021-04-13 浏览次数:139 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 17. (2020八下·兴县期中) 为了打赢湖北保卫战、武汉保卫战,4万多名医护人员逆行出征,约4万名建设者从八方赶来,并肩奋战,抢建火神山和雷神山医院.他们日夜鏖战,与病毒竞速,创造了10天左右时间建成两座传染病医院的“中国速度”!他们不畏风险,同困难斗争,充分展现团结起来打硬仗的“中国力量”,在建设过程中,有一位木工遇到了这样一道数学题:

    有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为 的正方形木板.

    1. (1) 求剩余木料的面积?
    2. (2) 如果木工想从剩余的木料中截出长为 ,宽为 的长方形木条,最多能截出块这样的木条.
  • 18. (2020八下·兴县期中) 菱形 中, 于点E,且

    1. (1) 求 的长;
    2. (2) 求菱形 的面积.
  • 19. (2020八下·兴县期中) 有一架秋千,当它静止时,踏板离地的垂直高度DE=1m , 将它往前推送6m(水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=4m , 秋千的绳索始终拉得很直,求绳索AD的长度.

  • 20. (2020八下·兴县期中)                 

    1. (1) 正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形,在图1正方形网格(每个小正方形边长为1)中画出格点△ABC,使AB=AC=5,BC=
    2. (2) 在△ABC中, AB、BC、AC三边的长分别为 ,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图2所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法

      ①△ABC的面积为:

      ②若△DEF三边的长分别为 ,请在图3的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为

  • 21. (2024八下·澧县期中) 已知:如图,平行四边形ABCD中,M、N分别为AB和CD的中点.

    1. (1) 求证:四边形AMCN是平行四边形;
    2. (2) 若AC=BC=5,AB=6,求四边形AMCN的面积.
  • 22. (2022八下·广陵期中) 阅读下面材料:

    在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗.

    小敏在思考问题时,有如下思路:连接AC.

    结合小敏的思路作答:

    1. (1) 若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由,参考小敏思考问题的方法解决一下问题;
    2. (2) 如图2,在(1)的条件下,若连接AC,BD.

      ①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;

      ②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.

  • 23. (2020八下·兴县期中) 综合与实践:折纸中的数学

    问题背景

    在数学活动课上,老师首先将平行四边形纸片ABCD按如图①所示方式折叠,使点C与点A重合,点D落到D′处,折痕为EF . 这时同学们很快证得:△AEF是等腰三角形.接下来各学习小组也动手操作起来,请你解决他们提出的问题.

    操作发现

    1. (1) “争先”小组将矩形纸片ABCD按上述方式折叠,如图②,发现重叠部分△AEF恰好是等边三角形,求矩形ABCD的长、宽之比是多少?
    2. (2) 实践探究

       “励志”小组将矩形纸片ABCD沿EF折叠,如图③,使B点落在AD边上的B′处;沿BG折叠,使D点落在D′处,且BD′过F点.试探究四边形EFGB′是什么特殊四边形?

    3. (3) 再探究:在图③中连接BB′,试判断并证明△BBG的形状.

微信扫码预览、分享更方便

试卷信息