当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省温州市2021年数学中考模拟试卷(3月)

更新时间:2024-07-13 浏览次数:530 类型:中考模拟
一、单选题
二、填空题
三、解答题
    1. (1) 计算:(﹣2)1+( ﹣1)0﹣|﹣ |;
    2. (2) 先化简,再求值: ÷ ,其中a=1﹣ .
  • 18. (2021·温州模拟) 如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.

    1. (1) 求证:AB=AF;
    2. (2) 若BC=2AB,∠BCD=100°,求∠ABE的度数.
  • 19. (2021·温州模拟) 为了了解学生掌握垃圾分类知识的情况,增强学生环保意识.某校举行了“垃圾分类,人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为及格)进行整理、描述和分析,下面给出了部分信息:

    七年级20名学生的测试成绩为:

    7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6

    七,八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:

    年级

    平均数

    众数

    中位数

    8分及以上人数所占百分比

    七年级

    7.5

    a

    7

    45%

    八年级

    7.5

    8

    b

    c


    根据以上信息,解答下列问题:

    1. (1) 在上述表格中:a=,b=,c=
    2. (2) 根据上述数据,你认为该校七、八年级中哪个年级的学生掌握垃圾分类知识的情况较好?请说明理由(写出一条理由即可);
    3. (3) 该校德育处从八年级测试成绩前四名甲、乙、丙、丁学生中,随机抽取2名学生参加全市现场垃圾分类知识竞赛,请用列表法或画树状图法求出必有甲同学参加比赛的概率.
  • 20. (2021·温州模拟) 如图,正方形网格中每个正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,分别按下列要求画三角形.

    1. (1) 其中一条边为无理数,两条边为有理数;
    2. (2) 其中两条边为无理数,一条边为有理数;
    3. (3) 三条边都能为无理数吗?若能在图(3)中画出,此三角形的面积是          (填有理数或无理数),并计算出你所画三角形的面积.


       
  • 21. (2021·温州模拟) 如图,△ACE内接于⊙O,AB是⊙O的直径,弦CD⊥AB于点H,交AE于点F,过点E作EG∥AC,分别交CD、AB的延长线于点G、M.

    1. (1) 求证:△ECF∽△GCE;
    2. (2) 若tanG= ,AH=3 ,求⊙O半径.
  • 22. (2021·温州模拟) 如图,抛物线 经过点 ,与两坐标轴的交点分别为A、B、C,它的对称轴为直线l,顶点为D.

    1. (1) 求该抛物线的表达式和顶点D的坐标;
    2. (2) 直线AC交抛物线的对称轴l于点E,在抛物线上是否存在点F,使得△BCF与△BCE的面积相等,如果存在,请求出点F的坐标;如果不存在,请说明理由.
  • 23. (2021·温州模拟) 甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用 天,且甲队单独施工 天和乙队单独施工 天的工作量相同.
    1. (1) 甲、乙两队单独完成此项任务各需多少天?
    2. (2) 设先由甲队施工 天,再由乙队施工 天,刚好完成筑路任务,求 之间的函数关系式.
    3. (3) 在(2)的条件下,若每天需付给甲队的筑路费用为0.1万元,需付给乙队的筑路费用为0.2万元,且甲、乙两队施工的总天数不超过24天,则如何安排甲、乙两队施工的天数,使施工费用最少,并求出最少费用.
  • 24. (2021·温州模拟) 如图1,△ABC内接于⊙O,∠ACB=60°,D,E分别是 的中点,连结DE分别交AC,BC于点F,G.

    1. (1) 求证:△DFC∽△CGE;
    2. (2) 若DF=3,tan∠GCE= ,求FG的长;
    3. (3) 如图2,连结AD,BE,若 =x, =y,求y关于x的函数表达式.

微信扫码预览、分享更方便

试卷信息