当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市昌平区2021年中考数学二模试卷

更新时间:2024-07-13 浏览次数:237 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 18. (2021·昌平模拟) 解不等式组: 并把解集表示在数轴上,
  • 20. (2021·昌平模拟) 下面是小明同学设计的“作一个角等于已知角的2倍”的尺规作图过程.

    已知:∠AOB

    求作:∠ADC , 使∠ADC=2∠AOB

    作法:如图,

    ①在射线OB上任取一点C

    ②作线段OC的垂直平分线,交OA于点D , 交OB于点E , 连接DC

    所以∠ADC即为所求的角

    根据小明设计的尺规作图过程,

    1. (1) 使用直尺和圆规,补全图形(保留作图痕迹)
    2. (2) 完成下面证明(说明:括号里填写作图依据)

      证明:∵DE是线段OC的垂直平分线,

      OD    ▲       ▲   ).

      ∴∠AOB    ▲      ▲   ).

      ∵∠ADC=∠AOB+∠DCO

      ∴∠ADC=2∠AOB

  • 21. (2021·昌平模拟) 已知关于x的一元二次方程 有两个不相等的实数根
    1. (1) 求a的取值范围;
    2. (2) 请你给出一个符合条件的a的值,并求出此时方程的解.
  • 22. (2021·昌平模拟) 如图,矩形ABCD , 延长AD至点F , 使DFAD , 连接ACCF , 过点AAE//CFCD的延长线于点E , 连接EF

    1. (1) 求证:四边形ACFE是菱形;
    2. (2) 连接BEAD于点GAB=2, 时,求BE的长.
  • 23. (2021·昌平模拟) 为了解昌平区两校学生对垃圾分类知识的掌握情况,从甲、乙两所学校各随机抽取40名学生进行垃圾分类知识的测试,获得了他们的成绩(百分制)并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息

    a . 甲、乙两校40名学生成绩的频数分布统计表如下:

    成绩x

    学校

    50≤x<60

    60≤x<70

    70≤x<80

    80≤x<90

    90≤x≤100

    4

    15

    9

    10

    2

    6

    3

    15

    14

    2

    (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)

    b . 甲校成绩在70≤x<80这一组的是:70,70,71,72,73,74,76,77,79

    c . 甲、乙两校成绩的平均分、中位数、众数如下:

    学校

    平均分

    中位数

    众数

    74.2

    n

    85

    73.5

    76

    84

    根据以上信息,回答下列问题:

    1. (1) 写出表中n的值;
    2. (2) 估计乙校200名学生中,成绩优秀的学生人数是
    3. (3) 假设甲校200名学生都参加此次测试,并决定年级排名在前100名的学生都可以被评为“垃圾分类知识标兵”荣誉称号,预估甲校学生至少要达到分可以获得此荣誉称号.
  • 24. (2021·昌平模拟) 在平面直角坐标系xOy中,反比例函数 的图象与直线ly=-x-2交于点Aa , -4),直线lx轴交于点B
    1. (1) 求ak的值;
    2. (2) 在y轴上存在一点C , 使得 ,求点C的坐标.
  • 25. (2021·昌平模拟) 如图,AB为⊙O直径,点CD在⊙O上,且 ,过点CCE//BD , 交AB延长线于点E

    1. (1) 求证:CE为⊙O切线;
    2. (2) 过点CCFAEBDH点,∠E=30°,CH=6,求BE的长.
  • 26. (2021·昌平模拟) 在平面直角坐标系xOy中,抛物线 x轴的交点为点A(1,0)和点B
    1. (1) 直接写出抛物线的对称轴和点B的坐标;
    2. (2) 分别过点Pt , 0)和点Qt+2,0)作x轴的垂线,交抛物线于点M和点N , 记抛物线在MN之间的部分为图象G(包括MN两点),记图形G上任意一点的纵坐标的最大值是m , 最小值为n

      ①当a=2时,画出抛物线的图象,根据图象直接写出mn的最小值;

      ②若存在实数t , 使得mn=2,直接写出a的取值范围

  • 27. (2021·昌平模拟) 如图,在等腰直角△ABC中,ABAC , ∠BAC=90°,点DCA延长线上一点,点EAB延长线上一点,且ADBE , 过点ADE的垂线交DE于点F , 交BC的延长线于点G

    1. (1) 依题意补全图形;
    2. (2) 当∠AEDα , 请你用含α的式子表示∠AGC
    3. (3) 用等式表示线段CGAD之间的数量关系,并写出证明思路
  • 28. (2021·昌平模拟) 对于平面直角坐标系xOy中的图形MN , 给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果PQ两点间的距离有最小值,那么称这个最小值为图形MN间的“闭距离”,记作dMN),特殊地,当图形M与图形N有公共点时,规定dMN)=0

    已知点

    1. (1) ①求d(点O , 线段AB);

      ②若d(线段CD , 直线AB)=1,直接写出m的值;

    2. (2) ⊙O的半径为r , 若d(⊙O , 线段AB)≤1,直接写出r的取值范围;
    3. (3) 若直线 上存在点E , 使dE )=1,直接写出b的取值范围.

微信扫码预览、分享更方便

试卷信息