当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湖北省武汉市2021年中考数学试卷

更新时间:2024-07-13 浏览次数:509 类型:中考真卷
一、单选题
二、填空题
三、解答题
  • 17. (2021·武汉) 解不等式组 请按下列步骤完成解答.
    1. (1) 解不等式①,得
    2. (2) 解不等式②,得
    3. (3) 把不等式①和②的解集在数轴上表示出来;

    4. (4) 原不等式组的解集是.
  • 18. (2021·武汉) 如图, ,直线 的延长线分别交于点 .求证: .

  • 19. (2023九上·开福月考) 为了解落实国家《关于全面加强新时代大中小学劳动教育的意见》的实施情况,某校从全体学生中随机抽取部分学生,调查他们平均每周劳动时间 (单位: ),按劳动时间分为四组: 组“ ”, 组“ ”, 组“ ”, 组“ ”.将收集的数据整理后,绘制成如下两幅不完整的统计图.

    根据以上信息,解答下列问题:

    1. (1) 这次抽样调查的样本容量是 组所在扇形的圆心角的大小是
    2. (2) 将条形统计图补充完整;
    3. (3) 该校共有1500名学生,请你估计该校平均每周劳动时间不少于 的学生人数.
  • 20. (2022·吉林月考) 如图是由小正方形组成的 网格,每个小正方形的顶点叫做格点,矩形 的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.

    1. (1) 在图(1)中,先在边 上画点 ,使 ,再过点 画直线 ,使 平分矩形 的面积;
    2. (2) 在图(2)中,先画 的高 ,再在边 上画点 ,使 .
  • 21. (2021·武汉) 如图, 的直径, 上两点, 的中点,过点 的垂线,垂足是 .连接 于点 .

    1. (1) 求证: 的切线;
    2. (2) 若 ,求 的值.
  • 22. (2022九下·长沙开学考) 在“乡村振兴”行动中,某村办企业以 两种农作物为原料开发了一种有机产品, 原料的单价是 原料单价的1.5倍,若用900元收购 原料会比用900元收购 原料少 .生产该产品每盒需要 原料 原料 ,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.
    1. (1) 求每盒产品的成本(成本=原料费+其他成本);
    2. (2) 设每盒产品的售价是 元( 是整数),每天的利润是 元,求 关于 的函数解析式(不需要写出自变量的取值范围);
    3. (3) 若每盒产品的售价不超过 元( 是大于60的常数,且是整数),直接写出每天的最大利润.
  • 23. (2021·武汉) 问题提出 如图(1),在 中, ,点 内部,直线 交于点 ,线段 之间存在怎样的数量关系?

     

    1. (1) 问题探究:先将问题特殊化.如图(2),当点 重合时,直接写出一个等式,表示 之间的数量关系;
    2. (2) 再探究一般情形.如图(1),当点 不重合时,证明(1)中的结论仍然成立.
    3. (3) 问题拓展 如图(3),在 中, 是常数),点 内部,直线 交于点 ,直接写出一个等式,表示线段 之间的数量关系.
  • 24. (2023·随州模拟) 抛物线 轴于 两点( 的左边).

     

    1. (1) 的顶点 轴的正半轴上,顶点 轴右侧的抛物线上.

      ①如图(1),若点 的坐标是 ,点 的横坐标是 ,直接写出点 的坐标;

      ②如图(2),若点 在抛物线上,且 的面积是12,求点 的坐标;

    2. (2) 如图(3), 是原点 关于抛物线顶点的对称点,不平行 轴的直线 分别交线段 (不含端点)于 两点,若直线 与抛物线只有一个公共点,求证 的值是定值.

微信扫码预览、分享更方便

试卷信息